From 81328c02e2d4b0488d977a3910b64877ab83423f Mon Sep 17 00:00:00 2001 From: Mark Date: Mon, 17 Apr 2023 09:26:08 -0700 Subject: [PATCH] Finished LA 101 handout --- .../Linear Algebra 101/parts/3 matrices.tex | 84 ++++++++++++++++--- 1 file changed, 73 insertions(+), 11 deletions(-) diff --git a/Advanced/Linear Algebra 101/parts/3 matrices.tex b/Advanced/Linear Algebra 101/parts/3 matrices.tex index be611a3..1431de7 100644 --- a/Advanced/Linear Algebra 101/parts/3 matrices.tex +++ b/Advanced/Linear Algebra 101/parts/3 matrices.tex @@ -115,7 +115,7 @@ AB = $$ \begin{center} -\begin{tikzpicture}[>=stealth,thick,baseline] +\begin{tikzpicture} \begin{scope}[layer = nodes] \matrix[ @@ -148,16 +148,16 @@ $$ }; \end{scope} - \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=3mm]A-1-1) rectangle ([xshift=2mm,yshift=-3mm]A-2-1) {}; + \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=2mm]A-1-1) rectangle ([xshift=2mm,yshift=-2mm]A-1-2) {}; - \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-1-2) {}; + \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-1) {}; \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {}; - \draw[rounded corners] ([xshift=-2mm,yshift=3mm]A-1-2) rectangle ([xshift=2mm,yshift=-3mm]A-2-2) {}; + \draw[rounded corners] ([xshift=-2mm,yshift=2mm]A-2-1) rectangle ([xshift=2mm,yshift=-2mm]A-2-2) {}; - \draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-2-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {}; + \draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-1-2) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {}; \draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {}; \end{tikzpicture} @@ -183,8 +183,7 @@ $$ \problem{} -Consider the following matrix product. \\ -Compute it or explain why you can't. +Compute the following matrix product or explain why you can't. $$ \begin{bmatrix} @@ -207,13 +206,76 @@ If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the \vfill \pagebreak +\problem{} +Is matrix multiplication commutative? \\ +\note{Does $AB = BA$ for all $A, B$? \\ You only need one counterexample to show this is false.} + +\vfill + + +\definition{} +Say we have a matrix $A$. The matrix $A^T$, pronounced \say{A-transpose}, is created by turning rows of $A$ into columns, and columns into rows: + +$$ +\begin{bmatrix} + 1 & 2 & 3 \\ + 4 & 5 & 6 +\end{bmatrix} ^ T += +\begin{bmatrix} + 1 & 4 \\ + 2 & 5 \\ + 3 & 6 +\end{bmatrix} +$$ \problem{} -Look back to \ref{matvec}. \\ -Convince yourself that vectors are matrices. \\ +Compute the following: + +\hfill +$ +\begin{bmatrix} + a & b \\ + c & d +\end{bmatrix} ^ T +$\hfill +$ +\begin{bmatrix} + 1 \\ + 3 \\ + 3 \\ + 7 \\ +\end{bmatrix} ^ T +$\hfill +$ +\begin{bmatrix} + 1 & 2 & 4 & 8 \\ +\end{bmatrix} ^ T +$ +\hfill~ + +\vfill +\pagebreak + +The \say{transpose} operator is often used to write column vectors compactly. \\ +Vertical arrays don't look good in horizontal text. + +\problem{} +Consider the vectors $a = [1, 2, 3]^T$ and $b = [40, 50, 60]^T$ \\ +\begin{itemize} + \item Compute the dot product $ab$. + \item Can you redefine the dot product using matrix multiplication? +\end{itemize} +\note{As you may have noticed, a vector is a special case of a matrix.} + +\vfill + +\problem{} +A \textit{column vector} is an $m \times 1$ matrix. \\ +A \textit{row vector} is a $1 \times m$ matrix. \\ +We usually use column vectors. Why? \\ +\hint{How does vector-matrix multiplication work?} -Can you multiply a matrix by a vector, as in $vA$? \\ -How does the dot prouduct relate to matrix multiplication? (transpose) \vfill \pagebreak \ No newline at end of file