Finished LA 101 handout
This commit is contained in:
parent
4e33edf6e7
commit
81328c02e2
@ -115,7 +115,7 @@ AB =
|
|||||||
$$
|
$$
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzpicture}[>=stealth,thick,baseline]
|
\begin{tikzpicture}
|
||||||
|
|
||||||
\begin{scope}[layer = nodes]
|
\begin{scope}[layer = nodes]
|
||||||
\matrix[
|
\matrix[
|
||||||
@ -148,16 +148,16 @@ $$
|
|||||||
};
|
};
|
||||||
\end{scope}
|
\end{scope}
|
||||||
|
|
||||||
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=3mm]A-1-1) rectangle ([xshift=2mm,yshift=-3mm]A-2-1) {};
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=2mm]A-1-1) rectangle ([xshift=2mm,yshift=-2mm]A-1-2) {};
|
||||||
|
|
||||||
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-1-2) {};
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-1) {};
|
||||||
|
|
||||||
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
|
||||||
|
|
||||||
|
|
||||||
\draw[rounded corners] ([xshift=-2mm,yshift=3mm]A-1-2) rectangle ([xshift=2mm,yshift=-3mm]A-2-2) {};
|
\draw[rounded corners] ([xshift=-2mm,yshift=2mm]A-2-1) rectangle ([xshift=2mm,yshift=-2mm]A-2-2) {};
|
||||||
|
|
||||||
\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-2-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
|
\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-1-2) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
|
||||||
|
|
||||||
\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
|
\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
@ -183,8 +183,7 @@ $$
|
|||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Consider the following matrix product. \\
|
Compute the following matrix product or explain why you can't.
|
||||||
Compute it or explain why you can't.
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
@ -207,13 +206,76 @@ If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the
|
|||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Is matrix multiplication commutative? \\
|
||||||
|
\note{Does $AB = BA$ for all $A, B$? \\ You only need one counterexample to show this is false.}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
Say we have a matrix $A$. The matrix $A^T$, pronounced \say{A-transpose}, is created by turning rows of $A$ into columns, and columns into rows:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 2 & 3 \\
|
||||||
|
4 & 5 & 6
|
||||||
|
\end{bmatrix} ^ T
|
||||||
|
=
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 4 \\
|
||||||
|
2 & 5 \\
|
||||||
|
3 & 6
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Look back to \ref{matvec}. \\
|
Compute the following:
|
||||||
Convince yourself that vectors are matrices. \\
|
|
||||||
|
\hfill
|
||||||
|
$
|
||||||
|
\begin{bmatrix}
|
||||||
|
a & b \\
|
||||||
|
c & d
|
||||||
|
\end{bmatrix} ^ T
|
||||||
|
$\hfill
|
||||||
|
$
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 \\
|
||||||
|
3 \\
|
||||||
|
3 \\
|
||||||
|
7 \\
|
||||||
|
\end{bmatrix} ^ T
|
||||||
|
$\hfill
|
||||||
|
$
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 2 & 4 & 8 \\
|
||||||
|
\end{bmatrix} ^ T
|
||||||
|
$
|
||||||
|
\hfill~
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
The \say{transpose} operator is often used to write column vectors compactly. \\
|
||||||
|
Vertical arrays don't look good in horizontal text.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Consider the vectors $a = [1, 2, 3]^T$ and $b = [40, 50, 60]^T$ \\
|
||||||
|
\begin{itemize}
|
||||||
|
\item Compute the dot product $ab$.
|
||||||
|
\item Can you redefine the dot product using matrix multiplication?
|
||||||
|
\end{itemize}
|
||||||
|
\note{As you may have noticed, a vector is a special case of a matrix.}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
A \textit{column vector} is an $m \times 1$ matrix. \\
|
||||||
|
A \textit{row vector} is a $1 \times m$ matrix. \\
|
||||||
|
We usually use column vectors. Why? \\
|
||||||
|
\hint{How does vector-matrix multiplication work?}
|
||||||
|
|
||||||
Can you multiply a matrix by a vector, as in $vA$? \\
|
|
||||||
How does the dot prouduct relate to matrix multiplication? (transpose)
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user