Added group theory parts
This commit is contained in:
parent
284107ab48
commit
7bad77dcd9
@ -13,12 +13,13 @@
|
||||
<Fall 2022>
|
||||
{Group Theory}
|
||||
{
|
||||
Based on a lesson by Janet Chen \\
|
||||
Prepared by Mark on \today
|
||||
}
|
||||
|
||||
|
||||
\input{parts/00 review}
|
||||
\input{parts/01 groups}
|
||||
\input{parts/02 isomorphism}
|
||||
\input{parts/03 bonus}
|
||||
|
||||
\end{document}
|
@ -7,8 +7,8 @@ A group must have the following properties: \\
|
||||
\begin{enumerate}
|
||||
\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$.
|
||||
\item $\ast$ is associative: $(a \ast b) \ast c = a \ast (b \ast c)$
|
||||
\item There is an \textit{identity} $\overline{0} \in G$, so that $a \ast \overline{0} = a$ for all $a \in G$.
|
||||
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = \overline{0}$. $b$ is called the \textit{inverse} of $a$. \\
|
||||
\item There is an \textit{identity} $e \in G$, so that $a \ast e = a \ast e = a$ for all $a \in G$.
|
||||
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = b \ast a = e$. $b$ is called the \textit{inverse} of $a$. \\
|
||||
This element is written as $-a$ if our operator is addition and $a^{-1}$ otherwise.
|
||||
\end{enumerate}
|
||||
|
||||
@ -59,6 +59,11 @@ Is $(G, \circ)$ a group?
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that if $G$ has four elements, $(G, \ast)$ is abelian.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that a group has exactly one identity element.
|
||||
\vfill
|
||||
@ -67,6 +72,18 @@ Show that a group has exactly one identity element.
|
||||
Show that each element in a group has exactly one inverse.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that...
|
||||
\begin{itemize}
|
||||
\item $e^{-1} = 1$
|
||||
\item $(a^{-1})^{-1} = a$
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $(a^m)^{-1} = (a^{-1})^m$ for all $a \in G$ and $m \in \mathbb{Z}$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
|
||||
\begin{itemize}
|
||||
@ -75,15 +92,16 @@ Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
|
||||
\end{itemize}
|
||||
What does this mean intuitively?
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a finite group (i.e, $G$ has finitely many elements), and let $g \in G$. \\
|
||||
Show that $\exists~n \in Z^+$ so that $g^n = \overline{0}$ \\
|
||||
Show that $\exists~n \in Z^+$ so that $g^n = e$ \\
|
||||
\hint{$g^n = g \ast g \ast ... \ast g$ $n$ times.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The smallest such $n$ defines the \textit{order} of $(G, \ast)$.
|
||||
The smallest such $n$ defines the \textit{order} of $g$.
|
||||
|
||||
\vfill
|
||||
|
||||
@ -92,42 +110,48 @@ What is the order of 5 in $(\mathbb{Z}/25, +)$? \\
|
||||
What is the order of 2 in $((\mathbb{Z}/17)^\times, \times)$? \\
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that if $G$ has four elements, $(G, \ast)$ is abelian.
|
||||
Let $e, a, b, c$ be counterclockwise rotations of a square by $0, \frac{\pi}{2}, \pi,$ and $\frac{3\pi}{2}$. \\
|
||||
Create a multiplication table for this group.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $d, f, g, h$ correspond to reflections of the square along the following axis. \\
|
||||
Create a multiplication table for this group.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=2]
|
||||
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- (0,0);
|
||||
|
||||
\draw[gray] (1.25,1.25) -- (-0.25,-0.25) node[below left]{$d$};
|
||||
\draw[gray] (1.25,-0.25) -- (-0.25,1.25) node[above left]{$f$};
|
||||
\draw[gray] (0.5,-0.25) -- (0.5,1.25) node[above]{$g$};
|
||||
\draw[gray] (-0.25, 0.5) -- (1.25,0.5) node[right]{$h$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for all symmetries of a square.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for all symmetries of a rhombus.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Find the order of each element in...
|
||||
\begin{itemize}
|
||||
\item The group of symmetries of a square
|
||||
\item The group of symmetries of a rhombus
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
Recall your tables from \ref{modtables}: \\
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & 0 & 1 & 2 & 3 \\
|
||||
1 & 1 & 2 & 3 & 0 \\
|
||||
2 & 2 & 3 & 0 & 1 \\
|
||||
3 & 3 & 0 & 1 & 2 \\
|
||||
\end{tabular}
|
||||
\hspace{1cm}
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
Look at these tables and convince yourself that $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times )$ are the same group. \\
|
||||
We say that two such groups are \textit{isomorphic}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Intuitively, this means that these two groups have the same algebraic structure. We can translate statements about addition in $\mathbb{Z}/4$ into statements about multiplication in $(\mathbb{Z}/5)^\times$ \\
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
56
Advanced/Group Theory/parts/02 isomorphism.tex
Normal file
56
Advanced/Group Theory/parts/02 isomorphism.tex
Normal file
@ -0,0 +1,56 @@
|
||||
\section{Isomorphism}
|
||||
|
||||
\definition{}
|
||||
We say two groups are \textit{isomorphic} if we can create a bijective mapping between them.
|
||||
|
||||
\problem{}
|
||||
Recall your tables from \ref{modtables}: \\
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & 0 & 1 & 2 & 3 \\
|
||||
1 & 1 & 2 & 3 & 0 \\
|
||||
2 & 2 & 3 & 0 & 1 \\
|
||||
3 & 3 & 0 & 1 & 2 \\
|
||||
\end{tabular}
|
||||
\hspace{1cm}
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
Are $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times)$ isomorphic? If they are, find a bijection that maps one to the other.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. Show that $f(e_A) = e_B$, where $e_A$ and $e_B$ are the identities of $A$ and $B$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. \\
|
||||
Show that $f(a^{-1}) = f(a)^{-1}$ for all $a \in A$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$. Show that $f(a)$ and $a$ have the same order.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Find all distinct groups of two elements. \\
|
||||
Find all distinct groups of three elements. \\
|
||||
Groups that are isomorphic are not distinct.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the groups $(\mathbb{R}, +)$ and $(\mathbb{Z}^+, \times)$ are isomorphic.
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
47
Advanced/Group Theory/parts/03 bonus.tex
Normal file
47
Advanced/Group Theory/parts/03 bonus.tex
Normal file
@ -0,0 +1,47 @@
|
||||
\section{Bonus}
|
||||
|
||||
\problem{}
|
||||
Find the inverse of 19 in $\mathbb{Z}/23$ \\
|
||||
\hint{Recall the Euclidian Algorithm}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
17
|
||||
\end{solution}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Prove Lagrange's theorem:
|
||||
|
||||
$$
|
||||
a^p = a \text{ (mod p)}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $a$ has an inverse mod $m$ iff $\gcd(a, m) = 1$ \\
|
||||
|
||||
\begin{solution}
|
||||
Assume $a^\star$ is the inverse of $a \pmod{m}$. \\
|
||||
Then $a^\star \times a \equiv 1 \pmod{m}$ \\
|
||||
|
||||
Therefore, $aa^\star - 1 = km$, and $aa^\star - km = 1$ \\
|
||||
We know that $\gcd(a, m)$ divides $a$ and $m$, therefore $\gcd(a, m)$ must divide $1$. \\
|
||||
$\gcd(a, m) = 1$ \\
|
||||
|
||||
Now, assume $\gcd(a, m) = 1$. \\
|
||||
By the Extended Euclidean Algorithm, we can find $(u, v)$ that satisfy $au+mv=1$ \\
|
||||
So, $au-1 = mv$. \\
|
||||
$m$ divides $au-1$, so $au \equiv 1 \pmod{m}$ \\
|
||||
$u$ is $a^\star$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that for any integers $a, b, c$, \\
|
||||
$\gcd(ac + b, a) = \gcd(a, b)$\\
|
||||
|
||||
\vfill
|
Loading…
x
Reference in New Issue
Block a user