Added group theory parts
This commit is contained in:
47
Advanced/Group Theory/parts/03 bonus.tex
Normal file
47
Advanced/Group Theory/parts/03 bonus.tex
Normal file
@ -0,0 +1,47 @@
|
||||
\section{Bonus}
|
||||
|
||||
\problem{}
|
||||
Find the inverse of 19 in $\mathbb{Z}/23$ \\
|
||||
\hint{Recall the Euclidian Algorithm}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
17
|
||||
\end{solution}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Prove Lagrange's theorem:
|
||||
|
||||
$$
|
||||
a^p = a \text{ (mod p)}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $a$ has an inverse mod $m$ iff $\gcd(a, m) = 1$ \\
|
||||
|
||||
\begin{solution}
|
||||
Assume $a^\star$ is the inverse of $a \pmod{m}$. \\
|
||||
Then $a^\star \times a \equiv 1 \pmod{m}$ \\
|
||||
|
||||
Therefore, $aa^\star - 1 = km$, and $aa^\star - km = 1$ \\
|
||||
We know that $\gcd(a, m)$ divides $a$ and $m$, therefore $\gcd(a, m)$ must divide $1$. \\
|
||||
$\gcd(a, m) = 1$ \\
|
||||
|
||||
Now, assume $\gcd(a, m) = 1$. \\
|
||||
By the Extended Euclidean Algorithm, we can find $(u, v)$ that satisfy $au+mv=1$ \\
|
||||
So, $au-1 = mv$. \\
|
||||
$m$ divides $au-1$, so $au \equiv 1 \pmod{m}$ \\
|
||||
$u$ is $a^\star$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that for any integers $a, b, c$, \\
|
||||
$\gcd(ac + b, a) = \gcd(a, b)$\\
|
||||
|
||||
\vfill
|
Reference in New Issue
Block a user