Added group theory parts
This commit is contained in:
56
Advanced/Group Theory/parts/02 isomorphism.tex
Normal file
56
Advanced/Group Theory/parts/02 isomorphism.tex
Normal file
@ -0,0 +1,56 @@
|
||||
\section{Isomorphism}
|
||||
|
||||
\definition{}
|
||||
We say two groups are \textit{isomorphic} if we can create a bijective mapping between them.
|
||||
|
||||
\problem{}
|
||||
Recall your tables from \ref{modtables}: \\
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & 0 & 1 & 2 & 3 \\
|
||||
1 & 1 & 2 & 3 & 0 \\
|
||||
2 & 2 & 3 & 0 & 1 \\
|
||||
3 & 3 & 0 & 1 & 2 \\
|
||||
\end{tabular}
|
||||
\hspace{1cm}
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
Are $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times)$ isomorphic? If they are, find a bijection that maps one to the other.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. Show that $f(e_A) = e_B$, where $e_A$ and $e_B$ are the identities of $A$ and $B$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. \\
|
||||
Show that $f(a^{-1}) = f(a)^{-1}$ for all $a \in A$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$. Show that $f(a)$ and $a$ have the same order.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Find all distinct groups of two elements. \\
|
||||
Find all distinct groups of three elements. \\
|
||||
Groups that are isomorphic are not distinct.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the groups $(\mathbb{R}, +)$ and $(\mathbb{Z}^+, \times)$ are isomorphic.
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
Reference in New Issue
Block a user