Added group theory parts
This commit is contained in:
@ -7,8 +7,8 @@ A group must have the following properties: \\
|
||||
\begin{enumerate}
|
||||
\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$.
|
||||
\item $\ast$ is associative: $(a \ast b) \ast c = a \ast (b \ast c)$
|
||||
\item There is an \textit{identity} $\overline{0} \in G$, so that $a \ast \overline{0} = a$ for all $a \in G$.
|
||||
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = \overline{0}$. $b$ is called the \textit{inverse} of $a$. \\
|
||||
\item There is an \textit{identity} $e \in G$, so that $a \ast e = a \ast e = a$ for all $a \in G$.
|
||||
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = b \ast a = e$. $b$ is called the \textit{inverse} of $a$. \\
|
||||
This element is written as $-a$ if our operator is addition and $a^{-1}$ otherwise.
|
||||
\end{enumerate}
|
||||
|
||||
@ -59,6 +59,11 @@ Is $(G, \circ)$ a group?
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that if $G$ has four elements, $(G, \ast)$ is abelian.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that a group has exactly one identity element.
|
||||
\vfill
|
||||
@ -67,6 +72,18 @@ Show that a group has exactly one identity element.
|
||||
Show that each element in a group has exactly one inverse.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that...
|
||||
\begin{itemize}
|
||||
\item $e^{-1} = 1$
|
||||
\item $(a^{-1})^{-1} = a$
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $(a^m)^{-1} = (a^{-1})^m$ for all $a \in G$ and $m \in \mathbb{Z}$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
|
||||
\begin{itemize}
|
||||
@ -75,15 +92,16 @@ Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
|
||||
\end{itemize}
|
||||
What does this mean intuitively?
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a finite group (i.e, $G$ has finitely many elements), and let $g \in G$. \\
|
||||
Show that $\exists~n \in Z^+$ so that $g^n = \overline{0}$ \\
|
||||
Show that $\exists~n \in Z^+$ so that $g^n = e$ \\
|
||||
\hint{$g^n = g \ast g \ast ... \ast g$ $n$ times.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The smallest such $n$ defines the \textit{order} of $(G, \ast)$.
|
||||
The smallest such $n$ defines the \textit{order} of $g$.
|
||||
|
||||
\vfill
|
||||
|
||||
@ -92,42 +110,48 @@ What is the order of 5 in $(\mathbb{Z}/25, +)$? \\
|
||||
What is the order of 2 in $((\mathbb{Z}/17)^\times, \times)$? \\
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that if $G$ has four elements, $(G, \ast)$ is abelian.
|
||||
Let $e, a, b, c$ be counterclockwise rotations of a square by $0, \frac{\pi}{2}, \pi,$ and $\frac{3\pi}{2}$. \\
|
||||
Create a multiplication table for this group.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $d, f, g, h$ correspond to reflections of the square along the following axis. \\
|
||||
Create a multiplication table for this group.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=2]
|
||||
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- (0,0);
|
||||
|
||||
\draw[gray] (1.25,1.25) -- (-0.25,-0.25) node[below left]{$d$};
|
||||
\draw[gray] (1.25,-0.25) -- (-0.25,1.25) node[above left]{$f$};
|
||||
\draw[gray] (0.5,-0.25) -- (0.5,1.25) node[above]{$g$};
|
||||
\draw[gray] (-0.25, 0.5) -- (1.25,0.5) node[right]{$h$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for all symmetries of a square.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for all symmetries of a rhombus.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Find the order of each element in...
|
||||
\begin{itemize}
|
||||
\item The group of symmetries of a square
|
||||
\item The group of symmetries of a rhombus
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
Recall your tables from \ref{modtables}: \\
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & 0 & 1 & 2 & 3 \\
|
||||
1 & 1 & 2 & 3 & 0 \\
|
||||
2 & 2 & 3 & 0 & 1 \\
|
||||
3 & 3 & 0 & 1 & 2 \\
|
||||
\end{tabular}
|
||||
\hspace{1cm}
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
Look at these tables and convince yourself that $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times )$ are the same group. \\
|
||||
We say that two such groups are \textit{isomorphic}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Intuitively, this means that these two groups have the same algebraic structure. We can translate statements about addition in $\mathbb{Z}/4$ into statements about multiplication in $(\mathbb{Z}/5)^\times$ \\
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
Reference in New Issue
Block a user