Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts

This commit is contained in:
Mark 2023-04-03 13:20:17 -07:00
commit 78be03872d
7 changed files with 30 additions and 32 deletions

View File

@ -26,12 +26,9 @@
Prepared by Mark on \today \\ Prepared by Mark on \today \\
} }
\section{Fields and Vector Spaces}
\input{parts/0 fields} \input{parts/0 fields}
\input{parts/1 spaces} \input{parts/1 spaces}
\input{parts/2 linearity} \input{parts/2 linear}
\input{parts/3 matrices} \input{parts/3 matrices}
@ -40,7 +37,7 @@
\section{Bonus} \section{Bonus}
\definition{} \definition{}
Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space. Show that $\mathbb{P}^n$ is a vector space.
\vfill \vfill
\problem{} \problem{}

View File

@ -1,3 +1,5 @@
\section{Fields}
\definition{Fields and Field Axioms} \definition{Fields and Field Axioms}
A \textit{field} $\mathbb{F}$ consists of a set $A$ and two operations $+$ and $\times$. \\ A \textit{field} $\mathbb{F}$ consists of a set $A$ and two operations $+$ and $\times$. \\
As usual, we may abbreviate $a \times b$ as $ab$. \\ As usual, we may abbreviate $a \times b$ as $ab$. \\

View File

@ -1,3 +1,5 @@
\section{Spaces}
\definition{Vector Spaces} \definition{Vector Spaces}
A \textit{space} over a field $\mathbb{F}$ consists of the following elements: A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
\begin{itemize}[itemsep = 2mm] \begin{itemize}[itemsep = 2mm]
@ -5,7 +7,7 @@ A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
\item An operation called \textit{vector addition}, denoted $+$ \\ \item An operation called \textit{vector addition}, denoted $+$ \\
Vector addition operates on two elements of $V$. \\ Vector addition operates on two elements of $V$. \\
\item An operation called \textit{scalar multilplication}, denoted $\times$ \\ \item An operation called \textit{scalar multiplication}, denoted $\times$ \\
Scalar multiplication multiplies an element of $V$ by an element of $\mathbb{F}$. \\ Scalar multiplication multiplies an element of $V$ by an element of $\mathbb{F}$. \\
Any element of $\mathbb{F}$ is called a \textit{scalar}. Any element of $\mathbb{F}$ is called a \textit{scalar}.
\end{itemize} \end{itemize}

View File

@ -1,4 +1,4 @@
\section{Linearity} \section{Linear Transformations}
\definition{} \definition{}
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$. A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
@ -36,7 +36,8 @@ Is $\text{median}(v): \mathbb{R}^n \to \mathbb{R}$ a linear map on $\mathbb{R}^n
\vfill \vfill
\problem{} \problem{}
Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? \\
\hint{$\mathbb{P}^n$ is the set of all polynomials of degree $n$.}
\vfill \vfill
\pagebreak \pagebreak

View File

@ -11,7 +11,8 @@ A =
$$ $$
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix. The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
We can define the product of a matrix $A$ and a vector $v$ as follows: \definition{}
We can define the product of a matrix $A$ and a vector $v$:
$$ $$
Av = Av =
@ -62,9 +63,9 @@ Compute the following:
$$ $$
\begin{bmatrix} \begin{bmatrix}
2 & 9 \\ 1 & 2 \\
7 & 5 \\ 3 & 4 \\
3 & 4 5 & 6
\end{bmatrix} \end{bmatrix}
\begin{bmatrix} \begin{bmatrix}
5 \\ 3 5 \\ 3
@ -85,16 +86,16 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol
$$ $$
\begin{bmatrix} \begin{bmatrix}
2 & 9 \\ 1 & 2 \\
7 & 5 \\ 3 & 4 \\
3 & 4 5 & 6
\end{bmatrix} \end{bmatrix}
\begin{bmatrix} \begin{bmatrix}
5 \\ 3 5 \\ 3
\end{bmatrix} \end{bmatrix}
= =
\begin{bmatrix} \begin{bmatrix}
37 \\ 50 \\ 27 11 \\ 27 \\ 43
\end{bmatrix} \end{bmatrix}
$$ $$
\end{center} \end{center}
@ -111,9 +112,9 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol
left delimiter={[}, left delimiter={[},
right delimiter={]} right delimiter={]}
] (A) { ] (A) {
2 & 9 \\ 1 & 2 \\
7 & 5 \\
3 & 4 \\ 3 & 4 \\
5 & 6 \\
}; };
\node[ \node[
@ -134,21 +135,21 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol
\node[ \node[
fit=(A-1-2)(A-1-2), fit=(A-1-2)(A-1-2),
inner xsep=8mm,inner ysep=0mm, inner xsep=8mm,inner ysep=0mm,
label=right:{$10 + 27 = 37$} label=right:{$5 + 6 = 11$}
](Y) {}; ](Y) {};
\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y); \draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y);
\node[ \node[
fit=(A-2-2)(A-2-2), fit=(A-2-2)(A-2-2),
inner xsep=8mm,inner ysep=0mm, inner xsep=8mm,inner ysep=0mm,
label=right:{$35 + 15 = 50$} label=right:{$15 + 12 = 27$}
](H) {}; ](H) {};
\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H); \draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H);
\node[ \node[
fit=(A-3-2)(A-3-2), fit=(A-3-2)(A-3-2),
inner xsep=8mm,inner ysep=0mm, inner xsep=8mm,inner ysep=0mm,
label=right:{$15 + 12 = 27$} label=right:{$25 + 18 = 43$}
](N) {}; ](N) {};
\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N); \draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N);
\end{tikzpicture} \end{tikzpicture}
@ -179,11 +180,6 @@ Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v)
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$. Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
\vfill \vfill
\pagebreak
\problem{}
Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space.
\vfill
\problem{} \problem{}

View File

@ -1,7 +1,7 @@
\section{The Curious Kestrel} \section{The Curious Kestrel}
\definition{} \definition{}
Recall that a bird is \textit{egocenteric} if it is fond of itself. \\ Recall that a bird is \textit{egocentric} if it is fond of itself. \\
A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$. A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$.
\definition{} \definition{}
@ -33,7 +33,7 @@ $$
In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$. In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$.
\problem{} \problem{}
Show that an egocenteric Kestrel is hopelessly egocentric. Show that an egocentric Kestrel is hopelessly egocentric.
\begin{solution} \begin{solution}
\begin{alltt} \begin{alltt}
@ -58,7 +58,7 @@ Given the Law of Composition and the Law of the Mockingbird, show that at least
\end{helpbox} \end{helpbox}
\begin{solution} \begin{solution}
The final piece is a lemma we proved earler: \\ The final piece is a lemma we proved earlier: \\
Any bird is fond of at least one bird Any bird is fond of at least one bird
\begin{alltt} \begin{alltt}
@ -115,7 +115,7 @@ Show that if $K$ is fond of $Kx$, $K$ is fond of $x$.
An egocentric Kestrel must be extremely lonely. Why is this? An egocentric Kestrel must be extremely lonely. Why is this?
\begin{solution} \begin{solution}
If a Kestrel is egocenteric, it must be the only bird in the forest! If a Kestrel is egocentric, it must be the only bird in the forest!
\begin{alltt} \begin{alltt}
\lineno{} \cmnt{Given} \lineno{} \cmnt{Given}

View File

@ -19,7 +19,7 @@
\generic{Helpful identities:} \generic{Helpful identities:}
This is not a complete list. In many cases, geometry is more helpful than algebra. \\ This is not a complete list. In many cases, geometry is more helpful than algebra. \\
Note that the first idenity is only valid if $\alpha \in [0, 90]$. Note that the first identity is only valid if $\alpha \in [0, 90]$.
\vspace{2mm} \vspace{2mm}
$\sin(\frac{\alpha}{2}) = \sqrt{\frac{1 - \cos(\alpha)}{2}}$ \\ $\sin(\frac{\alpha}{2}) = \sqrt{\frac{1 - \cos(\alpha)}{2}}$ \\
@ -32,7 +32,7 @@
\vspace{5mm} \vspace{5mm}
A good order to go in is 45, 30, 60, 15, 75, 36, 18, 3, 6, 72, 9, 1. \\ A good order to go in is 45, 30, 60, 15, 75, 36, 18, 3, 6, 72, 9, 1. \\
You should be able to get all of these using only geometery and the identities above. You should be able to get all of these using only geometry and the identities above.
\end{solution} \end{solution}
\end{document} \end{document}