Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts
This commit is contained in:
commit
78be03872d
@ -26,12 +26,9 @@
|
|||||||
Prepared by Mark on \today \\
|
Prepared by Mark on \today \\
|
||||||
}
|
}
|
||||||
|
|
||||||
\section{Fields and Vector Spaces}
|
|
||||||
|
|
||||||
|
|
||||||
\input{parts/0 fields}
|
\input{parts/0 fields}
|
||||||
\input{parts/1 spaces}
|
\input{parts/1 spaces}
|
||||||
\input{parts/2 linearity}
|
\input{parts/2 linear}
|
||||||
\input{parts/3 matrices}
|
\input{parts/3 matrices}
|
||||||
|
|
||||||
|
|
||||||
@ -40,7 +37,7 @@
|
|||||||
\section{Bonus}
|
\section{Bonus}
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space.
|
Show that $\mathbb{P}^n$ is a vector space.
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
\section{Fields}
|
||||||
|
|
||||||
\definition{Fields and Field Axioms}
|
\definition{Fields and Field Axioms}
|
||||||
A \textit{field} $\mathbb{F}$ consists of a set $A$ and two operations $+$ and $\times$. \\
|
A \textit{field} $\mathbb{F}$ consists of a set $A$ and two operations $+$ and $\times$. \\
|
||||||
As usual, we may abbreviate $a \times b$ as $ab$. \\
|
As usual, we may abbreviate $a \times b$ as $ab$. \\
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
\section{Spaces}
|
||||||
|
|
||||||
\definition{Vector Spaces}
|
\definition{Vector Spaces}
|
||||||
A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
|
A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
|
||||||
\begin{itemize}[itemsep = 2mm]
|
\begin{itemize}[itemsep = 2mm]
|
||||||
@ -5,7 +7,7 @@ A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
|
|||||||
\item An operation called \textit{vector addition}, denoted $+$ \\
|
\item An operation called \textit{vector addition}, denoted $+$ \\
|
||||||
Vector addition operates on two elements of $V$. \\
|
Vector addition operates on two elements of $V$. \\
|
||||||
|
|
||||||
\item An operation called \textit{scalar multilplication}, denoted $\times$ \\
|
\item An operation called \textit{scalar multiplication}, denoted $\times$ \\
|
||||||
Scalar multiplication multiplies an element of $V$ by an element of $\mathbb{F}$. \\
|
Scalar multiplication multiplies an element of $V$ by an element of $\mathbb{F}$. \\
|
||||||
Any element of $\mathbb{F}$ is called a \textit{scalar}.
|
Any element of $\mathbb{F}$ is called a \textit{scalar}.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
\section{Linearity}
|
\section{Linear Transformations}
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
|
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
|
||||||
@ -36,7 +36,8 @@ Is $\text{median}(v): \mathbb{R}^n \to \mathbb{R}$ a linear map on $\mathbb{R}^n
|
|||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$?
|
Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? \\
|
||||||
|
\hint{$\mathbb{P}^n$ is the set of all polynomials of degree $n$.}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
@ -11,7 +11,8 @@ A =
|
|||||||
$$
|
$$
|
||||||
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
||||||
|
|
||||||
We can define the product of a matrix $A$ and a vector $v$ as follows:
|
\definition{}
|
||||||
|
We can define the product of a matrix $A$ and a vector $v$:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
Av =
|
Av =
|
||||||
@ -62,9 +63,9 @@ Compute the following:
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
2 & 9 \\
|
1 & 2 \\
|
||||||
7 & 5 \\
|
3 & 4 \\
|
||||||
3 & 4
|
5 & 6
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
5 \\ 3
|
5 \\ 3
|
||||||
@ -85,16 +86,16 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
2 & 9 \\
|
1 & 2 \\
|
||||||
7 & 5 \\
|
3 & 4 \\
|
||||||
3 & 4
|
5 & 6
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
5 \\ 3
|
5 \\ 3
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
=
|
=
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
37 \\ 50 \\ 27
|
11 \\ 27 \\ 43
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
$$
|
$$
|
||||||
\end{center}
|
\end{center}
|
||||||
@ -111,9 +112,9 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol
|
|||||||
left delimiter={[},
|
left delimiter={[},
|
||||||
right delimiter={]}
|
right delimiter={]}
|
||||||
] (A) {
|
] (A) {
|
||||||
2 & 9 \\
|
1 & 2 \\
|
||||||
7 & 5 \\
|
|
||||||
3 & 4 \\
|
3 & 4 \\
|
||||||
|
5 & 6 \\
|
||||||
};
|
};
|
||||||
|
|
||||||
\node[
|
\node[
|
||||||
@ -134,21 +135,21 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol
|
|||||||
\node[
|
\node[
|
||||||
fit=(A-1-2)(A-1-2),
|
fit=(A-1-2)(A-1-2),
|
||||||
inner xsep=8mm,inner ysep=0mm,
|
inner xsep=8mm,inner ysep=0mm,
|
||||||
label=right:{$10 + 27 = 37$}
|
label=right:{$5 + 6 = 11$}
|
||||||
](Y) {};
|
](Y) {};
|
||||||
\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y);
|
\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y);
|
||||||
|
|
||||||
\node[
|
\node[
|
||||||
fit=(A-2-2)(A-2-2),
|
fit=(A-2-2)(A-2-2),
|
||||||
inner xsep=8mm,inner ysep=0mm,
|
inner xsep=8mm,inner ysep=0mm,
|
||||||
label=right:{$35 + 15 = 50$}
|
label=right:{$15 + 12 = 27$}
|
||||||
](H) {};
|
](H) {};
|
||||||
\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H);
|
\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H);
|
||||||
|
|
||||||
\node[
|
\node[
|
||||||
fit=(A-3-2)(A-3-2),
|
fit=(A-3-2)(A-3-2),
|
||||||
inner xsep=8mm,inner ysep=0mm,
|
inner xsep=8mm,inner ysep=0mm,
|
||||||
label=right:{$15 + 12 = 27$}
|
label=right:{$25 + 18 = 43$}
|
||||||
](N) {};
|
](N) {};
|
||||||
\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N);
|
\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N);
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
@ -179,11 +180,6 @@ Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v)
|
|||||||
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
|
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space.
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
\section{The Curious Kestrel}
|
\section{The Curious Kestrel}
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
Recall that a bird is \textit{egocenteric} if it is fond of itself. \\
|
Recall that a bird is \textit{egocentric} if it is fond of itself. \\
|
||||||
A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$.
|
A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$.
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
@ -33,7 +33,7 @@ $$
|
|||||||
In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$.
|
In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$.
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that an egocenteric Kestrel is hopelessly egocentric.
|
Show that an egocentric Kestrel is hopelessly egocentric.
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
@ -58,7 +58,7 @@ Given the Law of Composition and the Law of the Mockingbird, show that at least
|
|||||||
\end{helpbox}
|
\end{helpbox}
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
The final piece is a lemma we proved earler: \\
|
The final piece is a lemma we proved earlier: \\
|
||||||
Any bird is fond of at least one bird
|
Any bird is fond of at least one bird
|
||||||
|
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
@ -115,7 +115,7 @@ Show that if $K$ is fond of $Kx$, $K$ is fond of $x$.
|
|||||||
An egocentric Kestrel must be extremely lonely. Why is this?
|
An egocentric Kestrel must be extremely lonely. Why is this?
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
If a Kestrel is egocenteric, it must be the only bird in the forest!
|
If a Kestrel is egocentric, it must be the only bird in the forest!
|
||||||
|
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} \cmnt{Given}
|
\lineno{} \cmnt{Given}
|
||||||
|
@ -19,7 +19,7 @@
|
|||||||
|
|
||||||
\generic{Helpful identities:}
|
\generic{Helpful identities:}
|
||||||
This is not a complete list. In many cases, geometry is more helpful than algebra. \\
|
This is not a complete list. In many cases, geometry is more helpful than algebra. \\
|
||||||
Note that the first idenity is only valid if $\alpha \in [0, 90]$.
|
Note that the first identity is only valid if $\alpha \in [0, 90]$.
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
$\sin(\frac{\alpha}{2}) = \sqrt{\frac{1 - \cos(\alpha)}{2}}$ \\
|
$\sin(\frac{\alpha}{2}) = \sqrt{\frac{1 - \cos(\alpha)}{2}}$ \\
|
||||||
@ -32,7 +32,7 @@
|
|||||||
\vspace{5mm}
|
\vspace{5mm}
|
||||||
|
|
||||||
A good order to go in is 45, 30, 60, 15, 75, 36, 18, 3, 6, 72, 9, 1. \\
|
A good order to go in is 45, 30, 60, 15, 75, 36, 18, 3, 6, 72, 9, 1. \\
|
||||||
You should be able to get all of these using only geometery and the identities above.
|
You should be able to get all of these using only geometry and the identities above.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
Loading…
x
Reference in New Issue
Block a user