Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts
This commit is contained in:
		| @ -26,12 +26,9 @@ | ||||
| 			Prepared by Mark on \today \\ | ||||
| 		} | ||||
|  | ||||
| 	\section{Fields and Vector Spaces} | ||||
|  | ||||
|  | ||||
| 	\input{parts/0 fields} | ||||
| 	\input{parts/1 spaces} | ||||
| 	\input{parts/2 linearity} | ||||
| 	\input{parts/2 linear} | ||||
| 	\input{parts/3 matrices} | ||||
|  | ||||
|  | ||||
| @ -40,7 +37,7 @@ | ||||
| 	\section{Bonus} | ||||
|  | ||||
| 	\definition{} | ||||
| 	Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space. | ||||
| 	Show that $\mathbb{P}^n$ is a vector space. | ||||
| 	\vfill | ||||
|  | ||||
| 	\problem{} | ||||
|  | ||||
| @ -1,3 +1,5 @@ | ||||
| \section{Fields} | ||||
|  | ||||
| \definition{Fields and Field Axioms} | ||||
| A \textit{field} $\mathbb{F}$ consists of a set $A$ and two operations $+$ and $\times$. \\ | ||||
| As usual, we may abbreviate $a \times b$ as $ab$. \\ | ||||
|  | ||||
| @ -1,3 +1,5 @@ | ||||
| \section{Spaces} | ||||
|  | ||||
| \definition{Vector Spaces} | ||||
| A \textit{space} over a field $\mathbb{F}$ consists of the following elements: | ||||
| \begin{itemize}[itemsep = 2mm] | ||||
| @ -5,7 +7,7 @@ A \textit{space} over a field $\mathbb{F}$ consists of the following elements: | ||||
| 	\item An operation called \textit{vector addition}, denoted $+$ \\ | ||||
| 		Vector addition operates on two elements of $V$. \\ | ||||
|  | ||||
| 	\item An operation called \textit{scalar multilplication}, denoted $\times$ \\ | ||||
| 	\item An operation called \textit{scalar multiplication}, denoted $\times$ \\ | ||||
| 		Scalar multiplication multiplies an element of $V$ by an element of $\mathbb{F}$. \\ | ||||
| 		Any element of $\mathbb{F}$ is called a \textit{scalar}. | ||||
| \end{itemize} | ||||
|  | ||||
| @ -1,4 +1,4 @@ | ||||
| \section{Linearity} | ||||
| \section{Linear Transformations} | ||||
| 
 | ||||
| \definition{} | ||||
| A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$. | ||||
| @ -36,7 +36,8 @@ Is $\text{median}(v): \mathbb{R}^n \to \mathbb{R}$ a linear map on $\mathbb{R}^n | ||||
| \vfill | ||||
| 
 | ||||
| \problem{} | ||||
| Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? | ||||
| Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? \\ | ||||
| \hint{$\mathbb{P}^n$ is the set of all polynomials of degree $n$.} | ||||
| 
 | ||||
| \vfill | ||||
| \pagebreak | ||||
| @ -11,7 +11,8 @@ A = | ||||
| $$ | ||||
| The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix. | ||||
|  | ||||
| We can define the product of a matrix $A$ and a vector $v$ as follows: | ||||
| \definition{} | ||||
| We can define the product of a matrix $A$ and a vector $v$: | ||||
|  | ||||
| $$ | ||||
| Av = | ||||
| @ -62,9 +63,9 @@ Compute the following: | ||||
|  | ||||
| $$ | ||||
| \begin{bmatrix} | ||||
| 	2 & 9 \\ | ||||
| 	7 & 5 \\ | ||||
| 	3 & 4 | ||||
| 	1 & 2 \\ | ||||
| 	3 & 4 \\ | ||||
| 	5 & 6 | ||||
| \end{bmatrix} | ||||
| \begin{bmatrix} | ||||
| 	5 \\ 3 | ||||
| @ -85,16 +86,16 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol | ||||
|  | ||||
| 		$$ | ||||
| 		\begin{bmatrix} | ||||
| 			2 & 9 \\ | ||||
| 			7 & 5 \\ | ||||
| 			3 & 4 | ||||
| 			1 & 2 \\ | ||||
| 			3 & 4 \\ | ||||
| 			5 & 6 | ||||
| 		\end{bmatrix} | ||||
| 		\begin{bmatrix} | ||||
| 			5 \\ 3 | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		\begin{bmatrix} | ||||
| 			37 \\ 50 \\ 27 | ||||
| 			11 \\ 27 \\ 43 | ||||
| 		\end{bmatrix} | ||||
| 		$$ | ||||
| 	\end{center} | ||||
| @ -111,9 +112,9 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol | ||||
| 			left delimiter={[}, | ||||
| 			right delimiter={]} | ||||
| 		] (A) { | ||||
| 			2 & 9 \\ | ||||
| 			7 & 5 \\ | ||||
| 			1 & 2 \\ | ||||
| 			3 & 4 \\ | ||||
| 			5 & 6 \\ | ||||
| 		}; | ||||
|  | ||||
| 		\node[ | ||||
| @ -134,21 +135,21 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol | ||||
| 		\node[ | ||||
| 			fit=(A-1-2)(A-1-2), | ||||
| 			inner xsep=8mm,inner ysep=0mm, | ||||
| 			label=right:{$10 + 27 = 37$} | ||||
| 			label=right:{$5 + 6 = 11$} | ||||
| 		](Y) {}; | ||||
| 		\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y); | ||||
|  | ||||
| 		\node[ | ||||
| 			fit=(A-2-2)(A-2-2), | ||||
| 			inner xsep=8mm,inner ysep=0mm, | ||||
| 			label=right:{$35 + 15 = 50$} | ||||
| 			label=right:{$15 + 12 = 27$} | ||||
| 		](H) {}; | ||||
| 		\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H); | ||||
|  | ||||
| 		\node[ | ||||
| 			fit=(A-3-2)(A-3-2), | ||||
| 			inner xsep=8mm,inner ysep=0mm, | ||||
| 			label=right:{$15 + 12 = 27$} | ||||
| 			label=right:{$25 + 18 = 43$} | ||||
| 		](N) {}; | ||||
| 		\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N); | ||||
| 	\end{tikzpicture} | ||||
| @ -179,11 +180,6 @@ Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) | ||||
| Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space. | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
|  | ||||
| @ -1,7 +1,7 @@ | ||||
| \section{The Curious Kestrel} | ||||
|  | ||||
| \definition{} | ||||
| Recall that a bird is \textit{egocenteric} if it is fond of itself. \\ | ||||
| Recall that a bird is \textit{egocentric} if it is fond of itself. \\ | ||||
| A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$. | ||||
|  | ||||
| \definition{} | ||||
| @ -33,7 +33,7 @@ $$ | ||||
| In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$. | ||||
|  | ||||
| \problem{} | ||||
| Show that an egocenteric Kestrel is hopelessly egocentric. | ||||
| Show that an egocentric Kestrel is hopelessly egocentric. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| @ -58,7 +58,7 @@ Given the Law of Composition and the Law of the Mockingbird, show that at least | ||||
| \end{helpbox} | ||||
|  | ||||
| \begin{solution} | ||||
| 	The final piece is a lemma we proved earler: \\ | ||||
| 	The final piece is a lemma we proved earlier: \\ | ||||
| 	Any bird is fond of at least one bird | ||||
|  | ||||
| 	\begin{alltt} | ||||
| @ -115,7 +115,7 @@ Show that if $K$ is fond of $Kx$, $K$ is fond of $x$. | ||||
| An egocentric Kestrel must be extremely lonely. Why is this? | ||||
|  | ||||
| \begin{solution} | ||||
| 	If a Kestrel is egocenteric, it must be the only bird in the forest! | ||||
| 	If a Kestrel is egocentric, it must be the only bird in the forest! | ||||
|  | ||||
| 	\begin{alltt} | ||||
| 		\lineno{} \cmnt{Given} | ||||
|  | ||||
| @ -19,7 +19,7 @@ | ||||
|  | ||||
| 	\generic{Helpful identities:} | ||||
| 	This is not a complete list. In many cases, geometry is more helpful than algebra. \\ | ||||
| 	Note that the first idenity is only valid if $\alpha \in [0, 90]$. | ||||
| 	Note that the first identity is only valid if $\alpha \in [0, 90]$. | ||||
|  | ||||
| 	\vspace{2mm} | ||||
| 	$\sin(\frac{\alpha}{2}) = \sqrt{\frac{1 - \cos(\alpha)}{2}}$ \\ | ||||
| @ -32,7 +32,7 @@ | ||||
| 		\vspace{5mm} | ||||
|  | ||||
| 		A good order to go in is 45, 30, 60, 15, 75, 36, 18, 3, 6, 72, 9, 1. \\ | ||||
| 		You should be able to get all of these using only geometery and the identities above. | ||||
| 		You should be able to get all of these using only geometry and the identities above. | ||||
| 	\end{solution} | ||||
|  | ||||
| \end{document} | ||||
		Reference in New Issue
	
	Block a user