Minor edits
This commit is contained in:
parent
36a5556804
commit
77816e58e6
@ -116,7 +116,7 @@ Then, show that a negative $\delta$ is infinitesimal if and only if it is bigger
|
|||||||
Prove the following statements: \par
|
Prove the following statements: \par
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item If $\delta$ and $\varepsilon$ are infinitesimal, then $\delta + \varepsilon$ is infinitesimal.
|
\item If $\delta$ and $\varepsilon$ are infinitesimal, then $\delta + \varepsilon$ is infinitesimal.
|
||||||
\item If $\delta$ is infinitesimal and $x$ is limited, then $a\delta$ is infinitesimal.
|
\item If $\delta$ is infinitesimal and $x$ is limited, then $x\delta$ is infinitesimal.
|
||||||
\item If $x$ and $y$ are limited, $xy$ and $x+y$ are too.
|
\item If $x$ and $y$ are limited, $xy$ and $x+y$ are too.
|
||||||
\item A nonzero $\delta$ is infinitesimal iff $\delta^{-1}$ is unlimited.
|
\item A nonzero $\delta$ is infinitesimal iff $\delta^{-1}$ is unlimited.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
@ -126,9 +126,9 @@ Prove the following statements: \par
|
|||||||
\problem{}
|
\problem{}
|
||||||
Let $\delta$ be a positive infinitesimal. Which is greater?
|
Let $\delta$ be a positive infinitesimal. Which is greater?
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\delta$ or $\delta^2$?
|
\item $\delta$ or $\delta^2$
|
||||||
\item $(1 - \delta)$ or $(1 + \delta^2)^{-1!}$?
|
\item $(1 - \delta)$ or $(1 + \delta^2)^{-1!}$
|
||||||
\item $\frac{1 + \delta}{1 + \delta^2}$ or $\frac{2 + \delta^2}{2 + \delta^3}$? \par
|
\item $\frac{1 + \delta}{1 + \delta^2}$ or $\frac{2 + \delta^2}{2 + \delta^3}$ \par
|
||||||
\note[Note]{we define $\frac{1}{x}$ as $x^{-1}$, and thus $\frac{a}{b} = a \times b^{-1}$}
|
\note[Note]{we define $\frac{1}{x}$ as $x^{-1}$, and thus $\frac{a}{b} = a \times b^{-1}$}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
@ -138,13 +138,13 @@ Let $\delta$ be a positive infinitesimal. Which is greater?
|
|||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
We say two elements of an ordered field are \textit{infinitely close} if $x - y$ is infinitesimal. \par
|
We say two elements of an ordered field are \textit{infinitely close} if $x - y$ is infinitesimal. \par
|
||||||
We say that $x_0 \in \mathbb{R}$ is a \textit{standard part} of $x$ if it is infinitely close to $x$. \par
|
We say that $x_0 \in \mathbb{R}$ is the \textit{standard part} of $x$ if it is infinitely close to $x$. \par
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
We will denote the standard part of $x$ as $\text{st}(x)$. \par
|
We will denote the standard part of $x$ as $\text{st}(x)$. \par
|
||||||
Show that $\text{st}(x)$ is well-defined for limited $x$. \par
|
Show that $\text{st}(x)$ is well-defined for limited $x$. \par
|
||||||
(In other words, Show that $x_0$ exists and is unique for limited $x$). \par
|
(In other words, show that $x_0$ exists and is unique for limited $x$). \par
|
||||||
\hint{To prove existance, consider $\text{sup}(\{a \in \mathbb{R} ~|~ a < x\}$)}
|
\hint{To prove existence, consider $\text{sup}(\{a \in \mathbb{R} ~|~ a < x\}$)}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
|
@ -58,7 +58,7 @@ What is the derivative of $f(x) = x^n$?
|
|||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Say the derivatives of $f$ and $g$ are known. \par
|
Assume that the derivatives of $f$ and $g$ are known. \par
|
||||||
Find the derivatives of $h(x) = f(x) + g(x)$ and $k(x) = f(x) \times g(x)$.
|
Find the derivatives of $h(x) = f(x) + g(x)$ and $k(x) = f(x) \times g(x)$.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
@ -101,7 +101,7 @@ Find the derivative of the following functions:
|
|||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Say the derivatives of $f$ and $g$ are known. \par
|
Assume that the derivatives of $f$ and $g$ are known. \par
|
||||||
What is the derivative of $f(g(x))$?
|
What is the derivative of $f(g(x))$?
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
Loading…
x
Reference in New Issue
Block a user