Edits
This commit is contained in:
parent
90fd1e6ee1
commit
6ea7e9df97
@ -18,7 +18,7 @@
|
||||
<Spring 2023>
|
||||
{Definable Sets}
|
||||
{
|
||||
Prepared by Mark on \today
|
||||
Prepared by Mark and Nikita on \today
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,39 +1,36 @@
|
||||
\section{Structures}
|
||||
|
||||
\definition{}<def:language>
|
||||
A \textit{language} is a set of meaningless objects. Here are a few examples:
|
||||
\definition{}
|
||||
A \textit{universe} is a set of meaningless objects. Here are a few examples:
|
||||
\begin{itemize}
|
||||
\item $\{a, b, ..., z\}$
|
||||
\item $\{0, 1\}$
|
||||
\item $\mathbb{Z}$, $\mathbb{R}$, etc.
|
||||
\end{itemize}
|
||||
|
||||
Every language comes with the equality check $=$, which checks if two elements are the same.
|
||||
|
||||
|
||||
\definition{}
|
||||
A \textit{structure} over a language $\mathcal{L}$ consists of a set of symbols. \par
|
||||
The purpose of a structure is to give a language meaning.
|
||||
A \textit{structure} consists of a universe $U$ and set of symbols. \par
|
||||
A structure's symbols give meaning to the objects in its universe.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Symbols generally come in three types:
|
||||
\begin{itemize}
|
||||
\item Constant symbols, which let us specify specific elements of our language. \par
|
||||
\item Constant symbols, which let us specify specific elements of our universe. \par
|
||||
Examples: $0, 1, \frac{1}{2}, \pi$
|
||||
\vspace{2mm}
|
||||
|
||||
\item Function symbols, which let us navigate between elements of our language. \par
|
||||
\item Function symbols, which let us navigate between elements of our universe. \par
|
||||
Examples: $+, \times, \sin{x}, \sqrt{x}$
|
||||
\vspace{2mm}
|
||||
|
||||
\item Relation symbols, which let us compare elements of our language. \par
|
||||
\item Relation symbols, which let us compare elements of our universe. \par
|
||||
Examples: $<, >, \leq, \geq$ \par
|
||||
The symbol $=$ is \textbf{not} a relation. Why? \hint{See \ref{def:language}}
|
||||
\vspace{2mm}
|
||||
|
||||
\end{itemize}
|
||||
|
||||
The equality check $=$ is \textbf{not} a relation symbol. It is included in every structure by default.
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
|
||||
@ -47,7 +44,7 @@ $$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This is a structure over $\mathbb{Z}$ with the following symbols:
|
||||
This is a structure with the universe $\mathbb{Z}$ that contains the following symbols:
|
||||
\begin{itemize}
|
||||
\item Constants: \tab $\{0, 1\}$
|
||||
\item Functions: \tab $\{+, -\}$
|
||||
@ -86,10 +83,17 @@ A \textit{formula} in a structure $S$ is a well-formed string of constants, func
|
||||
You already know what a \say{well-formed} string is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par
|
||||
For the sake of time, I will not provide a formal definition. It isn't particularly interesting.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par
|
||||
Formulas with free variables let us define \say{properties} that certain objects have. \par
|
||||
|
||||
For example, $x$ is a free variable in the formula $\varphi(x) = x > 0$. \par
|
||||
$\varphi(3)$ is true and $\varphi(-3)$ is false.
|
||||
|
||||
\definition{Definable Elements}
|
||||
Say $S$ is a structure over a language $\mathcal{L}$. \par
|
||||
We say an element $e$ of $\mathcal{L}$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
|
||||
Say $S$ is a with a universe $U$. \par
|
||||
We say an element $e \in U$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
|
||||
|
||||
|
||||
\problem{}
|
||||
@ -104,10 +108,10 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi
|
||||
|
||||
|
||||
\problem{}
|
||||
Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$?
|
||||
Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$.
|
||||
|
||||
\begin{solution}
|
||||
No. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
|
||||
This isn't possible. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
|
||||
We have no way to distinguish between negative and positive numbers.
|
||||
\end{solution}
|
||||
|
||||
|
@ -19,8 +19,8 @@ $$
|
||||
$$
|
||||
|
||||
\definition{Definable Sets}
|
||||
Let $S$ be a structure over a language $\mathcal{L}$. \par
|
||||
We say a subset $M$ of $\mathcal{L}$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$.
|
||||
Let $S$ be a structure with a universe $U$. \par
|
||||
We say a subset $M$ of $U$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
@ -57,7 +57,7 @@ Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)
|
||||
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
|
||||
|
||||
\begin{solution}
|
||||
$\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$
|
||||
$\Bigl\{ x ~\bigl|~ \text{real}(x) = x \Bigr\}$
|
||||
\end{solution}
|
||||
|
||||
|
||||
@ -65,14 +65,13 @@ Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)
|
||||
|
||||
|
||||
\problem{}
|
||||
Define the set of integers in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par
|
||||
Define $\mathbb{R}^+_0$ in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par
|
||||
|
||||
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
|
||||
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
|
||||
\vfill
|
||||
|
||||
\begin{solution}
|
||||
$\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$
|
||||
\end{solution}
|
||||
\problem{}
|
||||
Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ holds iff $a$ divides $b$. \par
|
||||
Define the set of prime numbers in $\Bigl( \mathbb{Z}^+ ~\big|~ \{ \bigtriangleup \} \Bigr)$ \par
|
||||
|
||||
\vfill
|
||||
|
||||
@ -87,6 +86,38 @@ Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||
\problem{}
|
||||
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
|
||||
The relation $a \diamond b$ holds if $| a - b | = 1$
|
||||
|
||||
\problempart{}
|
||||
Define $\{\}$ in $S$.
|
||||
|
||||
\problempart{}
|
||||
Define ${-1, 1}$ in $S$.
|
||||
|
||||
\problempart{}
|
||||
Define $\{-2, 2\}$ in $S$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
|
||||
Let $S$ be the stucture $( P ~|~ \{\subseteq\} )$ \par
|
||||
|
||||
\problempart{}
|
||||
Show that the empty set is definable in $S$.
|
||||
|
||||
\problempart{}
|
||||
Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
|
||||
Show that $\Bumpeq$ is definable in $S$.
|
||||
|
||||
\problempart{}
|
||||
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{compliment} of the set $x$. \par
|
||||
Show that $f$ is definable in $S$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user