2023-05-11 14:54:18 -07:00

123 lines
3.2 KiB
TeX

\section{Definable Sets}
Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets.
\definition{Set-Builder Notation}
Say we have a condition $c$. \par
The set of all elements that satisfy that condition can be written as follows:
$$
\{ x ~|~ \text{$c$ is true} \}
$$
This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.}
\vspace{2mm}
For example, take the formula $\varphi(x) = \exists y ~ (y + y = x)$. \par
The set of all even integers can then be written
$$
\{ x ~|~ \varphi(x) \} = \{ x ~|~ \exists y ~ (y + y = x) \}
$$
\definition{Definable Sets}
Let $S$ be a structure with a universe $U$. \par
We say a subset $M$ of $U$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$.
\vspace{4mm}
For example, consider the structure $\Bigl( \mathbb{Z} ~\big|~ \{+\} \Bigr)$ \par
\vspace{2mm}
Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par
So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
Remember---we can only use symbols that are available in our structure!
\problem{}
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
\vfill
\problem{}
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
\vfill
\problem{}
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
\vfill
\pagebreak
\problem{}
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)\} \Bigr)$ \par
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
\begin{solution}
$\Bigl\{ x ~\bigl|~ \text{real}(x) = x \Bigr\}$
\end{solution}
\vfill
\problem{}
Define $\mathbb{R}^+_0$ in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par
\vfill
\problem{}
Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ holds iff $a$ divides $b$. \par
Define the set of prime numbers in $\Bigl( \mathbb{Z}^+ ~\big|~ \{ \bigtriangleup \} \Bigr)$ \par
\vfill
\theorem{Lagrange's Four Square Theorem}
Every natural number may be written as a sum of four integer squares.
\problem{}
Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
\vfill
\problem{}
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
\vfill
\pagebreak
\problem{}
Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
The relation $a \diamond b$ holds if $| a - b | = 1$
\problempart{}
Define $\{\}$ in $S$.
\problempart{}
Define ${-1, 1}$ in $S$.
\problempart{}
Define $\{-2, 2\}$ in $S$.
\vfill
\problem{}
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
Let $S$ be the stucture $( P ~|~ \{\subseteq\} )$ \par
\problempart{}
Show that the empty set is definable in $S$.
\problempart{}
Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
Show that $\Bumpeq$ is definable in $S$.
\problempart{}
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{compliment} of the set $x$. \par
Show that $f$ is definable in $S$.
\vfill
\pagebreak