This commit is contained in:
Mark 2023-05-11 14:54:18 -07:00
parent 90fd1e6ee1
commit 6ea7e9df97
3 changed files with 62 additions and 27 deletions

View File

@ -18,7 +18,7 @@
<Spring 2023> <Spring 2023>
{Definable Sets} {Definable Sets}
{ {
Prepared by Mark on \today Prepared by Mark and Nikita on \today
} }

View File

@ -1,39 +1,36 @@
\section{Structures} \section{Structures}
\definition{}<def:language> \definition{}
A \textit{language} is a set of meaningless objects. Here are a few examples: A \textit{universe} is a set of meaningless objects. Here are a few examples:
\begin{itemize} \begin{itemize}
\item $\{a, b, ..., z\}$ \item $\{a, b, ..., z\}$
\item $\{0, 1\}$ \item $\{0, 1\}$
\item $\mathbb{Z}$, $\mathbb{R}$, etc. \item $\mathbb{Z}$, $\mathbb{R}$, etc.
\end{itemize} \end{itemize}
Every language comes with the equality check $=$, which checks if two elements are the same.
\definition{} \definition{}
A \textit{structure} over a language $\mathcal{L}$ consists of a set of symbols. \par A \textit{structure} consists of a universe $U$ and set of symbols. \par
The purpose of a structure is to give a language meaning. A structure's symbols give meaning to the objects in its universe.
\vspace{2mm} \vspace{2mm}
Symbols generally come in three types: Symbols generally come in three types:
\begin{itemize} \begin{itemize}
\item Constant symbols, which let us specify specific elements of our language. \par \item Constant symbols, which let us specify specific elements of our universe. \par
Examples: $0, 1, \frac{1}{2}, \pi$ Examples: $0, 1, \frac{1}{2}, \pi$
\vspace{2mm} \vspace{2mm}
\item Function symbols, which let us navigate between elements of our language. \par \item Function symbols, which let us navigate between elements of our universe. \par
Examples: $+, \times, \sin{x}, \sqrt{x}$ Examples: $+, \times, \sin{x}, \sqrt{x}$
\vspace{2mm} \vspace{2mm}
\item Relation symbols, which let us compare elements of our language. \par \item Relation symbols, which let us compare elements of our universe. \par
Examples: $<, >, \leq, \geq$ \par Examples: $<, >, \leq, \geq$ \par
The symbol $=$ is \textbf{not} a relation. Why? \hint{See \ref{def:language}}
\vspace{2mm} \vspace{2mm}
\end{itemize} \end{itemize}
The equality check $=$ is \textbf{not} a relation symbol. It is included in every structure by default.
\vspace{3mm} \vspace{3mm}
@ -47,7 +44,7 @@ $$
\vspace{2mm} \vspace{2mm}
This is a structure over $\mathbb{Z}$ with the following symbols: This is a structure with the universe $\mathbb{Z}$ that contains the following symbols:
\begin{itemize} \begin{itemize}
\item Constants: \tab $\{0, 1\}$ \item Constants: \tab $\{0, 1\}$
\item Functions: \tab $\{+, -\}$ \item Functions: \tab $\{+, -\}$
@ -86,10 +83,17 @@ A \textit{formula} in a structure $S$ is a well-formed string of constants, func
You already know what a \say{well-formed} string is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par You already know what a \say{well-formed} string is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par
For the sake of time, I will not provide a formal definition. It isn't particularly interesting. For the sake of time, I will not provide a formal definition. It isn't particularly interesting.
\vspace{2mm}
A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par
Formulas with free variables let us define \say{properties} that certain objects have. \par
For example, $x$ is a free variable in the formula $\varphi(x) = x > 0$. \par
$\varphi(3)$ is true and $\varphi(-3)$ is false.
\definition{Definable Elements} \definition{Definable Elements}
Say $S$ is a structure over a language $\mathcal{L}$. \par Say $S$ is a with a universe $U$. \par
We say an element $e$ of $\mathcal{L}$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies. We say an element $e \in U$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
\problem{} \problem{}
@ -104,10 +108,10 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi
\problem{} \problem{}
Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$? Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$.
\begin{solution} \begin{solution}
No. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\ This isn't possible. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
We have no way to distinguish between negative and positive numbers. We have no way to distinguish between negative and positive numbers.
\end{solution} \end{solution}

View File

@ -19,8 +19,8 @@ $$
$$ $$
\definition{Definable Sets} \definition{Definable Sets}
Let $S$ be a structure over a language $\mathcal{L}$. \par Let $S$ be a structure with a universe $U$. \par
We say a subset $M$ of $\mathcal{L}$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$. We say a subset $M$ of $U$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$.
\vspace{4mm} \vspace{4mm}
@ -57,7 +57,7 @@ Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$} \hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
\begin{solution} \begin{solution}
$\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$ $\Bigl\{ x ~\bigl|~ \text{real}(x) = x \Bigr\}$
\end{solution} \end{solution}
@ -65,14 +65,13 @@ Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)
\problem{} \problem{}
Define the set of integers in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par Define $\mathbb{R}^+_0$ in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$} \vfill
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
\begin{solution} \problem{}
$\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$ Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ holds iff $a$ divides $b$. \par
\end{solution} Define the set of prime numbers in $\Bigl( \mathbb{Z}^+ ~\big|~ \{ \bigtriangleup \} \Bigr)$ \par
\vfill \vfill
@ -87,6 +86,38 @@ Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
\problem{} \problem{}
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
\vfill
\pagebreak
\problem{}
Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
The relation $a \diamond b$ holds if $| a - b | = 1$
\problempart{}
Define $\{\}$ in $S$.
\problempart{}
Define ${-1, 1}$ in $S$.
\problempart{}
Define $\{-2, 2\}$ in $S$.
\vfill
\problem{}
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
Let $S$ be the stucture $( P ~|~ \{\subseteq\} )$ \par
\problempart{}
Show that the empty set is definable in $S$.
\problempart{}
Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
Show that $\Bumpeq$ is definable in $S$.
\problempart{}
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{compliment} of the set $x$. \par
Show that $f$ is definable in $S$.
\vfill \vfill
\pagebreak \pagebreak