Removed quotient group handout
This commit is contained in:
		@@ -1,52 +0,0 @@
 | 
				
			|||||||
% use [nosolutions] flag to hide solutions.
 | 
					 | 
				
			||||||
% use [solutions] flag to show solutions.
 | 
					 | 
				
			||||||
\documentclass[
 | 
					 | 
				
			||||||
	solutions,
 | 
					 | 
				
			||||||
	singlenumbering,
 | 
					 | 
				
			||||||
	shortwarning,
 | 
					 | 
				
			||||||
	unfinished
 | 
					 | 
				
			||||||
]{../../resources/ormc_handout}
 | 
					 | 
				
			||||||
\usepackage{../../resources/macros}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\usepackage{units}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\uptitlel{Advanced 2}
 | 
					 | 
				
			||||||
\uptitler{Fall 2023}
 | 
					 | 
				
			||||||
\title{Quotient Groups}
 | 
					 | 
				
			||||||
\subtitle{Prepared by \githref{Mark} on \today{}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\def\znz#1{\nicefrac{\mathbb{Z}}{#1\mathbb{Z}}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{document}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	\maketitle
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	\input{parts/0 mod}
 | 
					 | 
				
			||||||
	\input{parts/1 groups}
 | 
					 | 
				
			||||||
	\input{parts/2 subgroups}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	% Rough outline:
 | 
					 | 
				
			||||||
	%
 | 
					 | 
				
			||||||
	% Part 1: (DONE)
 | 
					 | 
				
			||||||
	% mod, eqrel, eqclass.
 | 
					 | 
				
			||||||
	%
 | 
					 | 
				
			||||||
	% Part 2: (IN PROGRESS)
 | 
					 | 
				
			||||||
	% groups, Z/nZx, graphs, isomorphism.
 | 
					 | 
				
			||||||
	%   generators, generating sets.
 | 
					 | 
				
			||||||
	%
 | 
					 | 
				
			||||||
	% Part 3: (IN PROGRESS)
 | 
					 | 
				
			||||||
	% subgroups, isomorphic subgroups,
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	% TODO:
 | 
					 | 
				
			||||||
	%
 | 
					 | 
				
			||||||
	% cosets
 | 
					 | 
				
			||||||
	% normal subgroups
 | 
					 | 
				
			||||||
	% quotient groups
 | 
					 | 
				
			||||||
	% Understand Z/nZ
 | 
					 | 
				
			||||||
	% Functions as objects (groups of functions)
 | 
					 | 
				
			||||||
	% Q/Z problems (mod generalization)
 | 
					 | 
				
			||||||
	% isomorphism groups (which are iso to symmetric group)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\end{document}
 | 
					 | 
				
			||||||
@@ -1,157 +0,0 @@
 | 
				
			|||||||
\section{Modular Arithmetic}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
I'm sure you're all familiar with modular arithmetic.
 | 
					 | 
				
			||||||
In this section, our goal is to define \textit{equivalence relations},
 | 
					 | 
				
			||||||
\textit{equivalence classes}, and use them to formally define arithmetic in mod $n$.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Compute the following:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
	\item $5 + 3 \pmod{4}$
 | 
					 | 
				
			||||||
	\item $7 \times 4 \pmod{9}$
 | 
					 | 
				
			||||||
	\item $-4 \pmod{5}$
 | 
					 | 
				
			||||||
	\item $3^{-1} \pmod{7}$
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
An \textit{equivalence relation} on a set $A$
 | 
					 | 
				
			||||||
is a symbol that makes a statement about two elements of $A$.
 | 
					 | 
				
			||||||
For example, $=$ is an equivalence relation on the set of integers.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{2mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
An equivalence relation must satisfy the following properties:
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
	\item Reflexivity: $x \sim x$ for all $x \in A$
 | 
					 | 
				
			||||||
	\item Symmetry: if $x \sim y$, $y \sim x$ for any $x, y \in A$
 | 
					 | 
				
			||||||
	\item Transitivity: if $x \sim y$ and $y \sim z$, then $x \sim z$
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}<abseq>
 | 
					 | 
				
			||||||
Which of the following are equivalence relations on $\mathbb{Z}$?
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
	\item $>$
 | 
					 | 
				
			||||||
	\item $\leq$
 | 
					 | 
				
			||||||
	\item $\Bumpeq$, where $a \Bumpeq b$ if $|a| = |b|$
 | 
					 | 
				
			||||||
	\item $\neq$
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
\pagebreak
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Consider the relation $\equiv_n$ on $\mathbb{Z}$, where $a \equiv_n b$ holds iff $a \equiv b \pmod{n}$. \par
 | 
					 | 
				
			||||||
Show that $\equiv_n$ is an equivalence relation.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
Say we have an equivalence relation $\sim$ on a set $A$. \par
 | 
					 | 
				
			||||||
The \textit{equivalence class} of $x$ is the set of all elements that are $\sim$ to $x$. \par
 | 
					 | 
				
			||||||
Here are a few examples: \par
 | 
					 | 
				
			||||||
\begin{itemize}[itemsep=2mm]
 | 
					 | 
				
			||||||
	\item
 | 
					 | 
				
			||||||
	The equivalence class of $2$ in $\mathbb{Z}$ under the relation $=$ is $\{2\}$, \par
 | 
					 | 
				
			||||||
	since the only $x$ that satisfies $x = 2$ is $2$.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	\item
 | 
					 | 
				
			||||||
	The equivalence class of $9$ in $\mathbb{Z}$ under the relation $\Bumpeq$
 | 
					 | 
				
			||||||
	from \ref{abseq} is $\{-9, 9\}$.
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
What is the equivalence class of $3$ in $\mathbb{Z}$ under $\equiv_5$? \par
 | 
					 | 
				
			||||||
\hint{Remember that $\mathbb{Z}$ contains both positive and negative numbers.}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{solution}
 | 
					 | 
				
			||||||
	$\{..., -7, -2, 3, 8, 12, ... \}$
 | 
					 | 
				
			||||||
\end{solution}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Let $A$ be a set and $\sim$ an equivalence relation. \par
 | 
					 | 
				
			||||||
Show that every element of $A$ is in \textit{exactly one} equivalence class. \par
 | 
					 | 
				
			||||||
\hint{What properties does an equivalence relation satisfy?}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
We now have a proper definition of \say{mod $n$:} \par
 | 
					 | 
				
			||||||
it is the equivalence relation $a \equiv_n b$, which is usually written as $a \equiv b \pmod{n}$. \par
 | 
					 | 
				
			||||||
We will use this definition throughout this handout.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\note[Note]{
 | 
					 | 
				
			||||||
	This is different than the \say{mod} operator $a ~\%~ b $,
 | 
					 | 
				
			||||||
	which is defined as the remainder of $a \div b$.
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\pagebreak
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
Given any $x \in \mathbb{Z}$, $[x]_n$ is the equivalence class of $x$ under $\equiv_n$.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Compute the following:
 | 
					 | 
				
			||||||
\begin{itemize}[itemsep = 1mm]
 | 
					 | 
				
			||||||
	\item $[5]_3 + [4]_3$
 | 
					 | 
				
			||||||
	\item $[-2]_7 + [9]_7$
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Does $[4]_3 + [7]_5$ make sense?
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Find all $n$ that satisfy
 | 
					 | 
				
			||||||
$[5]_n \times [17]_n = [3]_n + [2]_n$ \par
 | 
					 | 
				
			||||||
\hint{$[a]_n = [b]_n$ iff $n$ divides $a - b$, by definition of mod.}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{solution}
 | 
					 | 
				
			||||||
	$[85] = [12] ~\implies~ n ~|~ 85 - 12 ~\implies~ n ~|~ 73 ~\implies~ n \in \{1, 73\}$
 | 
					 | 
				
			||||||
\end{solution}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
$\znz{n}$ (pronounced \say{$\mathbb{Z}$ mod $n \mathbb{Z}$}) is the set of equivalence classes of $\equiv_n$ on $\mathbb{Z}$. \par
 | 
					 | 
				
			||||||
For example, $\znz{5} = \{~ [0]_5,~ [1]_5,~ [2]_5,~ [3]_5,~ [4]_5 ~\}$. \par
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{2mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
This notation may seem a bit odd, but don't let it confuse you. \par
 | 
					 | 
				
			||||||
One of our goals today is to understand what exactly $\znz{n}$ means.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
What is $\znz{6}$?
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\pagebreak
 | 
					 | 
				
			||||||
@@ -1,158 +0,0 @@
 | 
				
			|||||||
\section{Groups}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
A \textit{group} $G = (S, \ast)$ consists of a set $S$ and a binary operator $\ast$. \par
 | 
					 | 
				
			||||||
By definition, a group always has the following properties:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{enumerate}
 | 
					 | 
				
			||||||
	\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$.
 | 
					 | 
				
			||||||
	\item $\ast$ is associative: $(a \ast b) \ast c = a \ast (b \ast c)$ for all $a,b,c \in G$
 | 
					 | 
				
			||||||
	\item There is an \textit{identity} $e \in G$, so that $a \ast e = a \ast e = a$ for all $a \in G$.
 | 
					 | 
				
			||||||
	\item Any $a \in G$ has an \textit{inverse} $a^{-1} \in G$ that satisfies $a \ast a^{-1} = a^{-1} \ast a = e$. \par
 | 
					 | 
				
			||||||
\end{enumerate}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\note[Note]{
 | 
					 | 
				
			||||||
	Commutativity is \textit{not} a required property of a group! \\
 | 
					 | 
				
			||||||
	In most cases, $a \ast b \neq b \ast a$.
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Is $(\znz{5}, +)$ a group? \par
 | 
					 | 
				
			||||||
How about $(\znz{5}, -)$? \par
 | 
					 | 
				
			||||||
\hint{In this problem, $+$ and $-$ work just as you'd expect.}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
What is the smallest possible group?
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{solution}
 | 
					 | 
				
			||||||
	Let $(G, \ast)$ be our group, where $G = \{e\}$ and $\ast$ is defined by the identity $e \ast e = e$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
	Verifying that the trivial group is a group is trivial.
 | 
					 | 
				
			||||||
\end{solution}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
How many distinct groups have two elements? \par
 | 
					 | 
				
			||||||
\hint{
 | 
					 | 
				
			||||||
	Two groups are \say{the same} if the elements of one can be renamed to get the other. \\
 | 
					 | 
				
			||||||
	A group is fully defined by its multiplication table.
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
\pagebreak
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%\problem{}<firstcross>
 | 
					 | 
				
			||||||
%Is $(\znz{17}, \times)$ a group? \par
 | 
					 | 
				
			||||||
%How should we modify $\znz{17}$ to make it one?
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%\problem{}<secondcross>
 | 
					 | 
				
			||||||
%Is $(\znz{6}, \times)$ a group? \par
 | 
					 | 
				
			||||||
%How should we modify $\znz{6}$ to make it one? \par
 | 
					 | 
				
			||||||
%\hint{
 | 
					 | 
				
			||||||
%	Be careful, this isn't as easy as \ref{firstcross}. \\
 | 
					 | 
				
			||||||
%	Which elements aren't invertible?
 | 
					 | 
				
			||||||
%}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%\definition{}
 | 
					 | 
				
			||||||
%Building on problems \ref{num:firstcross} and \ref{num:secondcross}, we'll define $(\znz{n})^\times$ as the multiplicative
 | 
					 | 
				
			||||||
%group of integers mod $n$. \par
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%Specifically, $(\znz{n})^\times$ is the set of all integers coprime to $n$. \par
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%\vspace{2mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%For example, $(\znz{6})^\times = \{1, 5\}$ \par
 | 
					 | 
				
			||||||
%and $(\znz{15})^\times = \{1, 2, 4, 7, 8, 11, 13, 14\}$ \par
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%\vspace{2mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
%Note that $0$ is the identity in $\znz{n}$ and $1$ is the identity in $(\znz{n})^\times$\hspace{-1.5ex}. \par
 | 
					 | 
				
			||||||
%\note[Note]{
 | 
					 | 
				
			||||||
%	Also, notice that we've omitted the operations $+$ and $\times$ in the two groups above. \\
 | 
					 | 
				
			||||||
%	These operations are implicitly \say{attached} to $\znz{n}$ and $(\znz{n})^\times$\hspace{-1.5ex}, \\
 | 
					 | 
				
			||||||
%	and we rarely write them for the sake of cleaner notation.
 | 
					 | 
				
			||||||
%}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
Let $G$ be a group, $a$ an element of $G$, and $n \in \mathbb{Z}^+$. \par
 | 
					 | 
				
			||||||
$a^n$ is the defined as $a \ast a \ast ... \ast a$, repeated $n$ times.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{1mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Note that this is \textbf{not} \say{normal} exponentiation! \par
 | 
					 | 
				
			||||||
If our group's operator is $+$ (for example, $\znz{5}$), $a^n = a + ... + a$, \par
 | 
					 | 
				
			||||||
which you'll recognize as multipication.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{1mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Beware of this odd notation. By convention, we use \say{multiplicative} notation
 | 
					 | 
				
			||||||
when working with groups---so, $a \ast b$ may also be written as $ab$,
 | 
					 | 
				
			||||||
and $a \ast a \ast a$ may be written as $a^3$.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{1mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Again, remember that $a^n$ simply means \say{$\ast$ $a$ with itself $n$ times,} \par
 | 
					 | 
				
			||||||
regardless of the specific operator our group uses.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Let $a$ be an element of a finite group. \par
 | 
					 | 
				
			||||||
Show that there is a positive integer $n$ so that $a^n = e$. \par
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{2mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
The smallest such $n$ defines the \textit{order} of $g$.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Find the order of 5 in $(\znz{25}, +)$. \par
 | 
					 | 
				
			||||||
%Find the order of 2 in $((\znz{17})^\times, \times)$. \par
 | 
					 | 
				
			||||||
Find the order of 2 in $(\znz{7}, +)$. \par
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
\pagebreak
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
Let $G$ be a group. \par
 | 
					 | 
				
			||||||
We say a $g \in G$ is a \textit{generator} of $G$
 | 
					 | 
				
			||||||
if every element in $G$ can be written as some power of $g$.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{2mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
If $G$ has a generator, we say $G$ is \textit{cyclic.}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Find a generator of $\znz{7}$. Then, find a generator of $(\znz{7})^\times$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
Let $G$ be a group. \par
 | 
					 | 
				
			||||||
The \textit{order} of $G$ is the number of elements in $G$. \par
 | 
					 | 
				
			||||||
We'll write this as $|G|$, using the same notation we use with sets. \par
 | 
					 | 
				
			||||||
\note[Note]{
 | 
					 | 
				
			||||||
	Don't confuse the order of an \textbf{element}
 | 
					 | 
				
			||||||
	with the order of a \textbf{group}!
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Let $G$ be a cyclic group, and let $g$ be any generator in $G$. \par
 | 
					 | 
				
			||||||
Show that $\text{ord}(g) = |G|$. \par
 | 
					 | 
				
			||||||
\hint{Contradiction.}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					 | 
				
			||||||
\pagebreak
 | 
					 | 
				
			||||||
@@ -1,23 +0,0 @@
 | 
				
			|||||||
\section{Subgroups}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
Let $G$ be a group, and let $H$ be a subset of $G$. \par
 | 
					 | 
				
			||||||
We say $H$ is a \textit{subgroup} of $G$ if $H$ is also a group
 | 
					 | 
				
			||||||
(with the operation $\ast$).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definition{}
 | 
					 | 
				
			||||||
Let $S$ be a subset of $G$. \par
 | 
					 | 
				
			||||||
The \textit{group generated by $S$} consists of all elements of $G$ \par
 | 
					 | 
				
			||||||
that may be written as a combination of elements in $S$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\vspace{2mm}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
We will denote this group as $\langle S \rangle$. \par
 | 
					 | 
				
			||||||
Convince yourself that $\langle g \rangle = G$ if $g$ generates $G$.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
What is the subgroup generated by $\{7, 8\}$ in $(\znz{15})^\times$? \par
 | 
					 | 
				
			||||||
Is this the whole group?
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\problem{}
 | 
					 | 
				
			||||||
Show that the group generated by $S$ is indeed a group.
 | 
					 | 
				
			||||||
		Reference in New Issue
	
	Block a user