Removed quotient group handout
This commit is contained in:
		| @ -1,52 +0,0 @@ | ||||
| % use [nosolutions] flag to hide solutions. | ||||
| % use [solutions] flag to show solutions. | ||||
| \documentclass[ | ||||
| 	solutions, | ||||
| 	singlenumbering, | ||||
| 	shortwarning, | ||||
| 	unfinished | ||||
| ]{../../resources/ormc_handout} | ||||
| \usepackage{../../resources/macros} | ||||
|  | ||||
| \usepackage{units} | ||||
|  | ||||
| \uptitlel{Advanced 2} | ||||
| \uptitler{Fall 2023} | ||||
| \title{Quotient Groups} | ||||
| \subtitle{Prepared by \githref{Mark} on \today{}} | ||||
|  | ||||
|  | ||||
| \def\znz#1{\nicefrac{\mathbb{Z}}{#1\mathbb{Z}}} | ||||
|  | ||||
| \begin{document} | ||||
|  | ||||
| 	\maketitle | ||||
|  | ||||
| 	\input{parts/0 mod} | ||||
| 	\input{parts/1 groups} | ||||
| 	\input{parts/2 subgroups} | ||||
|  | ||||
|  | ||||
| 	% Rough outline: | ||||
| 	% | ||||
| 	% Part 1: (DONE) | ||||
| 	% mod, eqrel, eqclass. | ||||
| 	% | ||||
| 	% Part 2: (IN PROGRESS) | ||||
| 	% groups, Z/nZx, graphs, isomorphism. | ||||
| 	%   generators, generating sets. | ||||
| 	% | ||||
| 	% Part 3: (IN PROGRESS) | ||||
| 	% subgroups, isomorphic subgroups, | ||||
|  | ||||
| 	% TODO: | ||||
| 	% | ||||
| 	% cosets | ||||
| 	% normal subgroups | ||||
| 	% quotient groups | ||||
| 	% Understand Z/nZ | ||||
| 	% Functions as objects (groups of functions) | ||||
| 	% Q/Z problems (mod generalization) | ||||
| 	% isomorphism groups (which are iso to symmetric group) | ||||
|  | ||||
| \end{document} | ||||
| @ -1,157 +0,0 @@ | ||||
| \section{Modular Arithmetic} | ||||
|  | ||||
| I'm sure you're all familiar with modular arithmetic. | ||||
| In this section, our goal is to define \textit{equivalence relations}, | ||||
| \textit{equivalence classes}, and use them to formally define arithmetic in mod $n$. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Compute the following: | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item $5 + 3 \pmod{4}$ | ||||
| 	\item $7 \times 4 \pmod{9}$ | ||||
| 	\item $-4 \pmod{5}$ | ||||
| 	\item $3^{-1} \pmod{7}$ | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| An \textit{equivalence relation} on a set $A$ | ||||
| is a symbol that makes a statement about two elements of $A$. | ||||
| For example, $=$ is an equivalence relation on the set of integers. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| An equivalence relation must satisfy the following properties: | ||||
| \begin{itemize} | ||||
| 	\item Reflexivity: $x \sim x$ for all $x \in A$ | ||||
| 	\item Symmetry: if $x \sim y$, $y \sim x$ for any $x, y \in A$ | ||||
| 	\item Transitivity: if $x \sim y$ and $y \sim z$, then $x \sim z$ | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
| \problem{}<abseq> | ||||
| Which of the following are equivalence relations on $\mathbb{Z}$? | ||||
| \begin{itemize} | ||||
| 	\item $>$ | ||||
| 	\item $\leq$ | ||||
| 	\item $\Bumpeq$, where $a \Bumpeq b$ if $|a| = |b|$ | ||||
| 	\item $\neq$ | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Consider the relation $\equiv_n$ on $\mathbb{Z}$, where $a \equiv_n b$ holds iff $a \equiv b \pmod{n}$. \par | ||||
| Show that $\equiv_n$ is an equivalence relation. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| Say we have an equivalence relation $\sim$ on a set $A$. \par | ||||
| The \textit{equivalence class} of $x$ is the set of all elements that are $\sim$ to $x$. \par | ||||
| Here are a few examples: \par | ||||
| \begin{itemize}[itemsep=2mm] | ||||
| 	\item | ||||
| 	The equivalence class of $2$ in $\mathbb{Z}$ under the relation $=$ is $\{2\}$, \par | ||||
| 	since the only $x$ that satisfies $x = 2$ is $2$. | ||||
|  | ||||
| 	\item | ||||
| 	The equivalence class of $9$ in $\mathbb{Z}$ under the relation $\Bumpeq$ | ||||
| 	from \ref{abseq} is $\{-9, 9\}$. | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| What is the equivalence class of $3$ in $\mathbb{Z}$ under $\equiv_5$? \par | ||||
| \hint{Remember that $\mathbb{Z}$ contains both positive and negative numbers.} | ||||
|  | ||||
| \begin{solution} | ||||
| 	$\{..., -7, -2, 3, 8, 12, ... \}$ | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Let $A$ be a set and $\sim$ an equivalence relation. \par | ||||
| Show that every element of $A$ is in \textit{exactly one} equivalence class. \par | ||||
| \hint{What properties does an equivalence relation satisfy?} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
| We now have a proper definition of \say{mod $n$:} \par | ||||
| it is the equivalence relation $a \equiv_n b$, which is usually written as $a \equiv b \pmod{n}$. \par | ||||
| We will use this definition throughout this handout. | ||||
|  | ||||
| \note[Note]{ | ||||
| 	This is different than the \say{mod} operator $a ~\%~ b $, | ||||
| 	which is defined as the remainder of $a \div b$. | ||||
| } | ||||
|  | ||||
|  | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| Given any $x \in \mathbb{Z}$, $[x]_n$ is the equivalence class of $x$ under $\equiv_n$. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Compute the following: | ||||
| \begin{itemize}[itemsep = 1mm] | ||||
| 	\item $[5]_3 + [4]_3$ | ||||
| 	\item $[-2]_7 + [9]_7$ | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Does $[4]_3 + [7]_5$ make sense? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Find all $n$ that satisfy | ||||
| $[5]_n \times [17]_n = [3]_n + [2]_n$ \par | ||||
| \hint{$[a]_n = [b]_n$ iff $n$ divides $a - b$, by definition of mod.} | ||||
|  | ||||
| \begin{solution} | ||||
| 	$[85] = [12] ~\implies~ n ~|~ 85 - 12 ~\implies~ n ~|~ 73 ~\implies~ n \in \{1, 73\}$ | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \definition{} | ||||
| $\znz{n}$ (pronounced \say{$\mathbb{Z}$ mod $n \mathbb{Z}$}) is the set of equivalence classes of $\equiv_n$ on $\mathbb{Z}$. \par | ||||
| For example, $\znz{5} = \{~ [0]_5,~ [1]_5,~ [2]_5,~ [3]_5,~ [4]_5 ~\}$. \par | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| This notation may seem a bit odd, but don't let it confuse you. \par | ||||
| One of our goals today is to understand what exactly $\znz{n}$ means. | ||||
|  | ||||
| \problem{} | ||||
| What is $\znz{6}$? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \pagebreak | ||||
| @ -1,158 +0,0 @@ | ||||
| \section{Groups} | ||||
|  | ||||
| \definition{} | ||||
| A \textit{group} $G = (S, \ast)$ consists of a set $S$ and a binary operator $\ast$. \par | ||||
| By definition, a group always has the following properties: | ||||
|  | ||||
| \begin{enumerate} | ||||
| 	\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$. | ||||
| 	\item $\ast$ is associative: $(a \ast b) \ast c = a \ast (b \ast c)$ for all $a,b,c \in G$ | ||||
| 	\item There is an \textit{identity} $e \in G$, so that $a \ast e = a \ast e = a$ for all $a \in G$. | ||||
| 	\item Any $a \in G$ has an \textit{inverse} $a^{-1} \in G$ that satisfies $a \ast a^{-1} = a^{-1} \ast a = e$. \par | ||||
| \end{enumerate} | ||||
|  | ||||
| \note[Note]{ | ||||
| 	Commutativity is \textit{not} a required property of a group! \\ | ||||
| 	In most cases, $a \ast b \neq b \ast a$. | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Is $(\znz{5}, +)$ a group? \par | ||||
| How about $(\znz{5}, -)$? \par | ||||
| \hint{In this problem, $+$ and $-$ work just as you'd expect.} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| What is the smallest possible group? | ||||
|  | ||||
| \begin{solution} | ||||
| 	Let $(G, \ast)$ be our group, where $G = \{e\}$ and $\ast$ is defined by the identity $e \ast e = e$ | ||||
|  | ||||
| 	Verifying that the trivial group is a group is trivial. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| How many distinct groups have two elements? \par | ||||
| \hint{ | ||||
| 	Two groups are \say{the same} if the elements of one can be renamed to get the other. \\ | ||||
| 	A group is fully defined by its multiplication table. | ||||
| } | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
| %\problem{}<firstcross> | ||||
| %Is $(\znz{17}, \times)$ a group? \par | ||||
| %How should we modify $\znz{17}$ to make it one? | ||||
|  | ||||
| %\problem{}<secondcross> | ||||
| %Is $(\znz{6}, \times)$ a group? \par | ||||
| %How should we modify $\znz{6}$ to make it one? \par | ||||
| %\hint{ | ||||
| %	Be careful, this isn't as easy as \ref{firstcross}. \\ | ||||
| %	Which elements aren't invertible? | ||||
| %} | ||||
|  | ||||
|  | ||||
| %\definition{} | ||||
| %Building on problems \ref{num:firstcross} and \ref{num:secondcross}, we'll define $(\znz{n})^\times$ as the multiplicative | ||||
| %group of integers mod $n$. \par | ||||
|  | ||||
| %Specifically, $(\znz{n})^\times$ is the set of all integers coprime to $n$. \par | ||||
|  | ||||
| %\vspace{2mm} | ||||
|  | ||||
| %For example, $(\znz{6})^\times = \{1, 5\}$ \par | ||||
| %and $(\znz{15})^\times = \{1, 2, 4, 7, 8, 11, 13, 14\}$ \par | ||||
|  | ||||
| %\vspace{2mm} | ||||
|  | ||||
| %Note that $0$ is the identity in $\znz{n}$ and $1$ is the identity in $(\znz{n})^\times$\hspace{-1.5ex}. \par | ||||
| %\note[Note]{ | ||||
| %	Also, notice that we've omitted the operations $+$ and $\times$ in the two groups above. \\ | ||||
| %	These operations are implicitly \say{attached} to $\znz{n}$ and $(\znz{n})^\times$\hspace{-1.5ex}, \\ | ||||
| %	and we rarely write them for the sake of cleaner notation. | ||||
| %} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| Let $G$ be a group, $a$ an element of $G$, and $n \in \mathbb{Z}^+$. \par | ||||
| $a^n$ is the defined as $a \ast a \ast ... \ast a$, repeated $n$ times. | ||||
|  | ||||
| \vspace{1mm} | ||||
|  | ||||
| Note that this is \textbf{not} \say{normal} exponentiation! \par | ||||
| If our group's operator is $+$ (for example, $\znz{5}$), $a^n = a + ... + a$, \par | ||||
| which you'll recognize as multipication. | ||||
|  | ||||
| \vspace{1mm} | ||||
|  | ||||
| Beware of this odd notation. By convention, we use \say{multiplicative} notation | ||||
| when working with groups---so, $a \ast b$ may also be written as $ab$, | ||||
| and $a \ast a \ast a$ may be written as $a^3$. | ||||
|  | ||||
| \vspace{1mm} | ||||
|  | ||||
| Again, remember that $a^n$ simply means \say{$\ast$ $a$ with itself $n$ times,} \par | ||||
| regardless of the specific operator our group uses. | ||||
|  | ||||
| \problem{} | ||||
| Let $a$ be an element of a finite group. \par | ||||
| Show that there is a positive integer $n$ so that $a^n = e$. \par | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| The smallest such $n$ defines the \textit{order} of $g$. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Find the order of 5 in $(\znz{25}, +)$. \par | ||||
| %Find the order of 2 in $((\znz{17})^\times, \times)$. \par | ||||
| Find the order of 2 in $(\znz{7}, +)$. \par | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| Let $G$ be a group. \par | ||||
| We say a $g \in G$ is a \textit{generator} of $G$ | ||||
| if every element in $G$ can be written as some power of $g$. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| If $G$ has a generator, we say $G$ is \textit{cyclic.} | ||||
|  | ||||
| \problem{} | ||||
| Find a generator of $\znz{7}$. Then, find a generator of $(\znz{7})^\times$ | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \definition{} | ||||
| Let $G$ be a group. \par | ||||
| The \textit{order} of $G$ is the number of elements in $G$. \par | ||||
| We'll write this as $|G|$, using the same notation we use with sets. \par | ||||
| \note[Note]{ | ||||
| 	Don't confuse the order of an \textbf{element} | ||||
| 	with the order of a \textbf{group}! | ||||
| } | ||||
|  | ||||
| \problem{} | ||||
| Let $G$ be a cyclic group, and let $g$ be any generator in $G$. \par | ||||
| Show that $\text{ord}(g) = |G|$. \par | ||||
| \hint{Contradiction.} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
| @ -1,23 +0,0 @@ | ||||
| \section{Subgroups} | ||||
|  | ||||
| \definition{} | ||||
| Let $G$ be a group, and let $H$ be a subset of $G$. \par | ||||
| We say $H$ is a \textit{subgroup} of $G$ if $H$ is also a group | ||||
| (with the operation $\ast$). | ||||
|  | ||||
| \definition{} | ||||
| Let $S$ be a subset of $G$. \par | ||||
| The \textit{group generated by $S$} consists of all elements of $G$ \par | ||||
| that may be written as a combination of elements in $S$ | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| We will denote this group as $\langle S \rangle$. \par | ||||
| Convince yourself that $\langle g \rangle = G$ if $g$ generates $G$. | ||||
|  | ||||
| \problem{} | ||||
| What is the subgroup generated by $\{7, 8\}$ in $(\znz{15})^\times$? \par | ||||
| Is this the whole group? | ||||
|  | ||||
| \problem{} | ||||
| Show that the group generated by $S$ is indeed a group. | ||||
		Reference in New Issue
	
	Block a user