Linear Algebra edits
This commit is contained in:
parent
eaa5978dc9
commit
60f74eb9b6
@ -9,6 +9,7 @@
|
||||
%\usepackage{lua-visual-debug}
|
||||
|
||||
\usepackage{tikz-3dplot}
|
||||
\usetikzlibrary{quotes,angles}
|
||||
|
||||
\begin{document}
|
||||
|
||||
@ -21,131 +22,120 @@
|
||||
}
|
||||
|
||||
|
||||
\section{Notation and Terminology}
|
||||
\input{parts/0 notation}
|
||||
\input{parts/1 vectors}
|
||||
|
||||
\section{Dot Products}
|
||||
|
||||
\definition{}
|
||||
\begin{itemize}
|
||||
\item $\mathbb{R}$ is the set of all real numbers.
|
||||
\item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive.
|
||||
\item $\mathbb{R}^+_0$ is the set of positive real numbers and zero
|
||||
\end{itemize}
|
||||
We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
|
||||
The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
|
||||
|
||||
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. I will use the definitions above.
|
||||
\footnotetext{
|
||||
\textbf{Bonus content. Feel free to skip.}
|
||||
|
||||
Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
|
||||
|
||||
\definition{}
|
||||
Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\
|
||||
For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\
|
||||
\vspace{2mm}
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
You can think of this as placing the two sets \say{perpendicular} to one another. In the image below, each dot corresponds to an element of $A \times B$:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
scale=1,
|
||||
bullet/.style={circle,inner sep=1.5pt,fill}
|
||||
]
|
||||
\draw[->] (-0.2,0) -- (4,0) node[right]{$A$};
|
||||
\draw[->] (0,-0.2) -- (0,3) node[above]{$B$};
|
||||
|
||||
\draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$};
|
||||
\draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$};
|
||||
\draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$};
|
||||
|
||||
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$};
|
||||
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$};
|
||||
|
||||
\node[bullet] at (1, 1){};
|
||||
\node[bullet] at (2, 1) {};
|
||||
\node[bullet] at (3, 1) {};
|
||||
\node[bullet] at (1, 2) {};
|
||||
\node[bullet] at (2, 2) {};
|
||||
\node[bullet] at (3, 2) {};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Let $A = \{0, 1\} \times \{0, 1\}$. \\
|
||||
Let $B = \{ a, b\}$ \\
|
||||
What is $A \times B$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is $\mathbb{R} \times \mathbb{R}$? \\
|
||||
\hint{Use the \say{perpendicular} analogy}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
$\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\
|
||||
In english, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}}
|
||||
Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4 a_5)$, where $a_n \in \mathbb{R}$. \\
|
||||
|
||||
$\mathbb{R}^1$ and $\mathbb{R}$ are identical.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\
|
||||
$\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try.
|
||||
|
||||
\problem{}
|
||||
Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\
|
||||
What is $\mathbb{R}^2 \times \mathbb{R}$?
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\section{Vectors}
|
||||
|
||||
\definition{}
|
||||
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
|
||||
As you already know, we have a few operations on vectors:
|
||||
\begin{itemize}
|
||||
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
|
||||
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\problem{}
|
||||
Compute the following, or explain why you can't:
|
||||
\begin{itemize}
|
||||
\item $[1, 2, 3] + [1, 3, 4]$
|
||||
\item $4 \times [5, 2, 4]$
|
||||
\item $a + b$, where $a \in \mathbb{R}
|
||||
^5$ and $b \in \mathbb{R}^7$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
We can also define the \textit{dot product} of two vectors. \\
|
||||
The dot product maps a pair of elements from $\mathbb{R}^n$ to $\mathbb{R}$:
|
||||
It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
|
||||
}
|
||||
|
||||
$$
|
||||
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
|
||||
$$
|
||||
|
||||
\problem{}
|
||||
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the dot product is
|
||||
\begin{itemize}
|
||||
\item Commutative
|
||||
\item Distributive
|
||||
\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
|
||||
\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
% pictures
|
||||
% addition, scalar multiplication
|
||||
% dot product
|
||||
% transformations
|
||||
% linearity
|
||||
% matrices
|
||||
% norms
|
||||
|
||||
\problem{}
|
||||
Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
|
||||
\hint{What is $c$ in terms of $a$ and $b$?}
|
||||
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
|
||||
\hint{The length of $a$ is $||a||$}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
|
||||
\draw[->]
|
||||
(0,0) coordinate (o) -- node[above left] {$a$}
|
||||
(1,2) coordinate (a)
|
||||
;
|
||||
|
||||
\draw[->]
|
||||
(o) -- node[below] {$b$}
|
||||
(3,0.5) coordinate (b)
|
||||
;
|
||||
|
||||
\draw[
|
||||
draw = gray,
|
||||
text = gray,
|
||||
-
|
||||
] (a) -- node[above] {$c$} (b);
|
||||
|
||||
\draw
|
||||
pic[
|
||||
"$\alpha$",
|
||||
draw = orange,
|
||||
text = orange,
|
||||
<->,
|
||||
angle eccentricity = 1.2,
|
||||
angle radius = 1cm
|
||||
]
|
||||
{ angle = b--o--a }
|
||||
;
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
|
||||
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
|
||||
|
||||
\draw[->] (0,0) -- (1,2) node[right]{};
|
||||
\draw[->] (0,0) -- (3,0.5) node[above]{};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
|
||||
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
|
||||
|
||||
\draw[->] (0,0) -- (3,1) node[right]{};
|
||||
\draw[->] (0,0) -- (3,0.5) node[above]{};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
|
||||
|
||||
|
87
Advanced/Linear Algebra 101/parts/0 notation.tex
Executable file
87
Advanced/Linear Algebra 101/parts/0 notation.tex
Executable file
@ -0,0 +1,87 @@
|
||||
\section{Notation and Terminology}
|
||||
|
||||
\definition{}
|
||||
\begin{itemize}
|
||||
\item $\mathbb{R}$ is the set of all real numbers.
|
||||
\item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive.
|
||||
\item $\mathbb{R}^+_0$ is the set of positive real numbers and zero.
|
||||
\end{itemize}
|
||||
|
||||
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. I will use the definitions above.
|
||||
|
||||
|
||||
\definition{}
|
||||
Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\
|
||||
For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\
|
||||
This is called the \textit{cartesian product}.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
You can think of this as placing the two sets \say{perpendicular} to one another:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
scale=1,
|
||||
bullet/.style={circle,inner sep=1.5pt,fill}
|
||||
]
|
||||
\draw[->] (-0.2,0) -- (4,0) node[right]{$A$};
|
||||
\draw[->] (0,-0.2) -- (0,3) node[above]{$B$};
|
||||
|
||||
\draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$};
|
||||
\draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$};
|
||||
\draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$};
|
||||
|
||||
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$};
|
||||
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$};
|
||||
|
||||
\node[bullet] at (1, 1){};
|
||||
\node[bullet] at (2, 1) {};
|
||||
\node[bullet] at (3, 1) {};
|
||||
\node[bullet] at (1, 2) {};
|
||||
\node[bullet] at (2, 2) {};
|
||||
\node[bullet] at (3, 2) {};
|
||||
|
||||
|
||||
\draw[rounded corners] (0.5, 0.5) rectangle (3.5, 2.5) {};
|
||||
\node[above] at (2, 2.5) {$A \times B$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Let $A = \{0, 1\} \times \{0, 1\}$ \\
|
||||
Let $B = \{ a, b\}$ \\
|
||||
What is $A \times B$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is $\mathbb{R} \times \mathbb{R}$? \\
|
||||
\hint{Use the \say{perpendicular} analogy}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
$\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\
|
||||
In english, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}}
|
||||
Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4 a_5)$, where $a_n \in \mathbb{R}$. \\
|
||||
|
||||
$\mathbb{R}^1$ and $\mathbb{R}$ are identical.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\
|
||||
$\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try.
|
||||
|
||||
\problem{}
|
||||
Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\
|
||||
What is $\mathbb{R}^2 \times \mathbb{R}$?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
81
Advanced/Linear Algebra 101/parts/1 vectors.tex
Executable file
81
Advanced/Linear Algebra 101/parts/1 vectors.tex
Executable file
@ -0,0 +1,81 @@
|
||||
\section{Vectors}
|
||||
|
||||
\definition{}
|
||||
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
|
||||
As you may already know, we have a few operations on vectors:
|
||||
\begin{itemize}
|
||||
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
|
||||
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
|
||||
\end{itemize}
|
||||
\note{
|
||||
The above examples are for $\mathbb{R}^2$, and each vector thus has two components. \\
|
||||
These operations are similar for all other $n$.
|
||||
}
|
||||
|
||||
\problem{}
|
||||
Compute the following or explain why you can't:
|
||||
\begin{itemize}
|
||||
\item $[1, 2, 3] - [1, 3, 4]$ \note{Subtraction works just like addition.}
|
||||
\item $4 \times [5, 2, 4]$
|
||||
\item $a + b$, where $a \in \mathbb{R}
|
||||
^5$ and $b \in \mathbb{R}^7$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Consider $(2, -1)$ and $(3, 1)$ in $\mathbb{R}^2$. \\
|
||||
Can you develop geometric intuition for their sum and difference?
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
|
||||
\draw[->]
|
||||
(0,0) coordinate (o) -- node[below left] {$(1, 2)$}
|
||||
(2, -1) coordinate (a)
|
||||
;
|
||||
|
||||
\draw[->]
|
||||
(a) -- node[below right] {$(3, 1)$}
|
||||
(5, 0) coordinate (b)
|
||||
;
|
||||
|
||||
\draw[
|
||||
draw = gray,
|
||||
text = gray,
|
||||
->
|
||||
]
|
||||
(o) -- node[above] {$??$}
|
||||
(b) coordinate (s)
|
||||
;
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{Euclidean Norm}
|
||||
In general, a \textit{norm} on $\mathbb{R}^n$ is a map from $\mathbb{R}^n$ to $\mathbb{R}^+_0$ \\
|
||||
Usually, one thinks of a norm as a \say{length metric} on a vector space. \\
|
||||
The norm of a vector $v$ is written $||v||$. \\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We usually use the \textit{euclidean norm} when we work in $\mathbb{R}^n$. \\
|
||||
If $v \in \mathbb{R}^n$, the euclidean norm is defined as follows:
|
||||
$$
|
||||
||v|| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}
|
||||
$$
|
||||
This is simply an application of the pythagorean theorem.
|
||||
|
||||
\problem{}
|
||||
Compute the euclidean norm of
|
||||
\begin{itemize}
|
||||
\item $[2, 3]$
|
||||
\item $[-2, 1, -4, 2]$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user