143 lines
2.9 KiB
TeX
Executable File
143 lines
2.9 KiB
TeX
Executable File
% use [nosolutions] flag to hide solutions.
|
|
% use [solutions] flag to show solutions.
|
|
\documentclass[
|
|
solutions,
|
|
nowarning,
|
|
%singlenumbering
|
|
]{../../resources/ormc_handout}
|
|
|
|
%\usepackage{lua-visual-debug}
|
|
|
|
\usepackage{tikz-3dplot}
|
|
\usetikzlibrary{quotes,angles}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
<Advanced 2>
|
|
<Spring 2023>
|
|
{Linear Algebra 101}
|
|
{
|
|
Prepared by Mark on \today \\
|
|
}
|
|
|
|
|
|
\input{parts/0 notation}
|
|
\input{parts/1 vectors}
|
|
|
|
\section{Dot Products}
|
|
|
|
\definition{}
|
|
We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
|
|
The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
|
|
|
|
\footnotetext{
|
|
\textbf{Bonus content. Feel free to skip.}
|
|
|
|
Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
|
|
|
|
\vspace{2mm}
|
|
|
|
It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
|
|
}
|
|
|
|
$$
|
|
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
|
|
$$
|
|
|
|
\problem{}
|
|
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
|
|
|
|
\vfill
|
|
|
|
\problem{}
|
|
Show that the dot product is
|
|
\begin{itemize}
|
|
\item Commutative
|
|
\item Distributive
|
|
\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
|
|
\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
|
|
\end{itemize}
|
|
|
|
|
|
\vfill
|
|
\pagebreak
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
|
|
\hint{What is $c$ in terms of $a$ and $b$?}
|
|
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
|
|
\hint{The length of $a$ is $||a||$}
|
|
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[scale=1]
|
|
|
|
\draw[->]
|
|
(0,0) coordinate (o) -- node[above left] {$a$}
|
|
(1,2) coordinate (a)
|
|
;
|
|
|
|
\draw[->]
|
|
(o) -- node[below] {$b$}
|
|
(3,0.5) coordinate (b)
|
|
;
|
|
|
|
\draw[
|
|
draw = gray,
|
|
text = gray,
|
|
-
|
|
] (a) -- node[above] {$c$} (b);
|
|
|
|
\draw
|
|
pic[
|
|
"$\alpha$",
|
|
draw = orange,
|
|
text = orange,
|
|
<->,
|
|
angle eccentricity = 1.2,
|
|
angle radius = 1cm
|
|
]
|
|
{ angle = b--o--a }
|
|
;
|
|
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
\pagebreak
|
|
|
|
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
|
\begin{center}
|
|
\begin{tikzpicture}[scale=1]
|
|
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
|
|
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
|
|
|
|
\draw[->] (0,0) -- (1,2) node[right]{};
|
|
\draw[->] (0,0) -- (3,0.5) node[above]{};
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{minipage}
|
|
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
|
\begin{center}
|
|
\begin{tikzpicture}[scale=1]
|
|
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
|
|
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
|
|
|
|
\draw[->] (0,0) -- (3,1) node[right]{};
|
|
\draw[->] (0,0) -- (3,0.5) node[above]{};
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{minipage}
|
|
|
|
|
|
|
|
|
|
|
|
\end{document} |