Linear Algebra edits

This commit is contained in:
Mark 2023-04-09 10:58:49 -07:00
parent eaa5978dc9
commit 60f74eb9b6
3 changed files with 268 additions and 110 deletions

View File

@ -9,6 +9,7 @@
%\usepackage{lua-visual-debug} %\usepackage{lua-visual-debug}
\usepackage{tikz-3dplot} \usepackage{tikz-3dplot}
\usetikzlibrary{quotes,angles}
\begin{document} \begin{document}
@ -21,131 +22,120 @@
} }
\section{Notation and Terminology} \input{parts/0 notation}
\input{parts/1 vectors}
\section{Dot Products}
\definition{} \definition{}
\begin{itemize} We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
\item $\mathbb{R}$ is the set of all real numbers. The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
\item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive.
\item $\mathbb{R}^+_0$ is the set of positive real numbers and zero
\end{itemize}
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. I will use the definitions above. \footnotetext{
\textbf{Bonus content. Feel free to skip.}
Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
\definition{} \vspace{2mm}
Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\
For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\
\vspace{4mm} It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
}
You can think of this as placing the two sets \say{perpendicular} to one another. In the image below, each dot corresponds to an element of $A \times B$:
\begin{center}
\begin{tikzpicture}[
scale=1,
bullet/.style={circle,inner sep=1.5pt,fill}
]
\draw[->] (-0.2,0) -- (4,0) node[right]{$A$};
\draw[->] (0,-0.2) -- (0,3) node[above]{$B$};
\draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$};
\draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$};
\draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$};
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$};
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$};
\node[bullet] at (1, 1){};
\node[bullet] at (2, 1) {};
\node[bullet] at (3, 1) {};
\node[bullet] at (1, 2) {};
\node[bullet] at (2, 2) {};
\node[bullet] at (3, 2) {};
\end{tikzpicture}
\end{center}
\problem{}
Let $A = \{0, 1\} \times \{0, 1\}$. \\
Let $B = \{ a, b\}$ \\
What is $A \times B$?
\vfill
\problem{}
What is $\mathbb{R} \times \mathbb{R}$? \\
\hint{Use the \say{perpendicular} analogy}
\vfill
\pagebreak
\definition{}
$\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\
In english, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\
\vspace{4mm}
Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}}
Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4 a_5)$, where $a_n \in \mathbb{R}$. \\
$\mathbb{R}^1$ and $\mathbb{R}$ are identical.
\vspace{4mm}
Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\
$\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try.
\problem{}
Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\
What is $\mathbb{R}^2 \times \mathbb{R}$?
\vfill
\section{Vectors}
\definition{}
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
As you already know, we have a few operations on vectors:
\begin{itemize}
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
\end{itemize}
\problem{}
Compute the following, or explain why you can't:
\begin{itemize}
\item $[1, 2, 3] + [1, 3, 4]$
\item $4 \times [5, 2, 4]$
\item $a + b$, where $a \in \mathbb{R}
^5$ and $b \in \mathbb{R}^7$
\end{itemize}
\vfill
\pagebreak
\definition{}
We can also define the \textit{dot product} of two vectors. \\
The dot product maps a pair of elements from $\mathbb{R}^n$ to $\mathbb{R}$:
$$ $$
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
$$ $$
\problem{} \problem{}
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
\vfill
\problem{}
Show that the dot product is
\begin{itemize}
\item Commutative
\item Distributive
\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
\end{itemize}
\vfill
\pagebreak
% pictures
% addition, scalar multiplication \problem{}
% dot product Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
% transformations \hint{What is $c$ in terms of $a$ and $b$?}
% linearity \hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
% matrices \hint{The length of $a$ is $||a||$}
% norms
\begin{center}
\begin{tikzpicture}[scale=1]
\draw[->]
(0,0) coordinate (o) -- node[above left] {$a$}
(1,2) coordinate (a)
;
\draw[->]
(o) -- node[below] {$b$}
(3,0.5) coordinate (b)
;
\draw[
draw = gray,
text = gray,
-
] (a) -- node[above] {$c$} (b);
\draw
pic[
"$\alpha$",
draw = orange,
text = orange,
<->,
angle eccentricity = 1.2,
angle radius = 1cm
]
{ angle = b--o--a }
;
\end{tikzpicture}
\end{center}
\vfill
\pagebreak
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
\begin{center}
\begin{tikzpicture}[scale=1]
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
\draw[->] (0,0) -- (1,2) node[right]{};
\draw[->] (0,0) -- (3,0.5) node[above]{};
\end{tikzpicture}
\end{center}
\end{minipage}
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
\begin{center}
\begin{tikzpicture}[scale=1]
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
\draw[->] (0,0) -- (3,1) node[right]{};
\draw[->] (0,0) -- (3,0.5) node[above]{};
\end{tikzpicture}
\end{center}
\end{minipage}

View File

@ -0,0 +1,87 @@
\section{Notation and Terminology}
\definition{}
\begin{itemize}
\item $\mathbb{R}$ is the set of all real numbers.
\item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive.
\item $\mathbb{R}^+_0$ is the set of positive real numbers and zero.
\end{itemize}
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. I will use the definitions above.
\definition{}
Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\
For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\
This is called the \textit{cartesian product}.
\vspace{4mm}
You can think of this as placing the two sets \say{perpendicular} to one another:
\begin{center}
\begin{tikzpicture}[
scale=1,
bullet/.style={circle,inner sep=1.5pt,fill}
]
\draw[->] (-0.2,0) -- (4,0) node[right]{$A$};
\draw[->] (0,-0.2) -- (0,3) node[above]{$B$};
\draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$};
\draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$};
\draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$};
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$};
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$};
\node[bullet] at (1, 1){};
\node[bullet] at (2, 1) {};
\node[bullet] at (3, 1) {};
\node[bullet] at (1, 2) {};
\node[bullet] at (2, 2) {};
\node[bullet] at (3, 2) {};
\draw[rounded corners] (0.5, 0.5) rectangle (3.5, 2.5) {};
\node[above] at (2, 2.5) {$A \times B$};
\end{tikzpicture}
\end{center}
\problem{}
Let $A = \{0, 1\} \times \{0, 1\}$ \\
Let $B = \{ a, b\}$ \\
What is $A \times B$?
\vfill
\problem{}
What is $\mathbb{R} \times \mathbb{R}$? \\
\hint{Use the \say{perpendicular} analogy}
\vfill
\pagebreak
\definition{}
$\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\
In english, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\
\vspace{4mm}
Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}}
Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4 a_5)$, where $a_n \in \mathbb{R}$. \\
$\mathbb{R}^1$ and $\mathbb{R}$ are identical.
\vspace{4mm}
Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\
$\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try.
\problem{}
Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\
What is $\mathbb{R}^2 \times \mathbb{R}$?
\vfill
\pagebreak

View File

@ -0,0 +1,81 @@
\section{Vectors}
\definition{}
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
As you may already know, we have a few operations on vectors:
\begin{itemize}
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
\end{itemize}
\note{
The above examples are for $\mathbb{R}^2$, and each vector thus has two components. \\
These operations are similar for all other $n$.
}
\problem{}
Compute the following or explain why you can't:
\begin{itemize}
\item $[1, 2, 3] - [1, 3, 4]$ \note{Subtraction works just like addition.}
\item $4 \times [5, 2, 4]$
\item $a + b$, where $a \in \mathbb{R}
^5$ and $b \in \mathbb{R}^7$
\end{itemize}
\vfill
\problem{}
Consider $(2, -1)$ and $(3, 1)$ in $\mathbb{R}^2$. \\
Can you develop geometric intuition for their sum and difference?
\begin{center}
\begin{tikzpicture}[scale=1]
\draw[->]
(0,0) coordinate (o) -- node[below left] {$(1, 2)$}
(2, -1) coordinate (a)
;
\draw[->]
(a) -- node[below right] {$(3, 1)$}
(5, 0) coordinate (b)
;
\draw[
draw = gray,
text = gray,
->
]
(o) -- node[above] {$??$}
(b) coordinate (s)
;
\end{tikzpicture}
\end{center}
\vfill
\pagebreak
\definition{Euclidean Norm}
In general, a \textit{norm} on $\mathbb{R}^n$ is a map from $\mathbb{R}^n$ to $\mathbb{R}^+_0$ \\
Usually, one thinks of a norm as a \say{length metric} on a vector space. \\
The norm of a vector $v$ is written $||v||$. \\
\vspace{2mm}
We usually use the \textit{euclidean norm} when we work in $\mathbb{R}^n$. \\
If $v \in \mathbb{R}^n$, the euclidean norm is defined as follows:
$$
||v|| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}
$$
This is simply an application of the pythagorean theorem.
\problem{}
Compute the euclidean norm of
\begin{itemize}
\item $[2, 3]$
\item $[-2, 1, -4, 2]$
\end{itemize}
\vfill
\pagebreak