Whitespace
This commit is contained in:
parent
49a2ffed91
commit
5cfba49bf0
@ -20,7 +20,6 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
||||||
We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par
|
We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par
|
||||||
@ -30,11 +29,11 @@
|
|||||||
\begin{itemize}[itemsep=4mm]
|
\begin{itemize}[itemsep=4mm]
|
||||||
\item
|
\item
|
||||||
Show that the product of two odd integers is odd.
|
Show that the product of two odd integers is odd.
|
||||||
|
|
||||||
\item
|
\item
|
||||||
Let $a, b \in \mathbb{Z}, a \neq 0$.
|
Let $a, b \in \mathbb{Z}, a \neq 0$.
|
||||||
We say $a$ \textit{divides} $b$ and write $a~|~b$ if there is a $k \in \mathbb{Z}$ so that $ak = b$.
|
We say $a$ \textit{divides} $b$ and write $a~|~b$ if there is a $k \in \mathbb{Z}$ so that $ak = b$.
|
||||||
|
|
||||||
Show that $a~|~b \implies a~|~2b$
|
Show that $a~|~b \implies a~|~2b$
|
||||||
|
|
||||||
\item
|
\item
|
||||||
@ -63,7 +62,7 @@
|
|||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$
|
Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
\begin{itemize}[itemsep=4mm]
|
\begin{itemize}[itemsep=4mm]
|
||||||
\item Show that $\sqrt{2}$ is irrational.
|
\item Show that $\sqrt{2}$ is irrational.
|
||||||
@ -120,7 +119,7 @@
|
|||||||
\begin{itemize}[itemsep=4mm]
|
\begin{itemize}[itemsep=4mm]
|
||||||
|
|
||||||
\item Make sense of the conditions on $E$.
|
\item Make sense of the conditions on $E$.
|
||||||
|
|
||||||
\item The \textit{degree} of a vertex $a$ is the number of edges connected to that vertex. \par
|
\item The \textit{degree} of a vertex $a$ is the number of edges connected to that vertex. \par
|
||||||
We'll denote this as $d(a)$. Write a formal definition of this function using set-builder notation and the definitions above.
|
We'll denote this as $d(a)$. Write a formal definition of this function using set-builder notation and the definitions above.
|
||||||
Recall that $|X|$ denotes the size of a set $X$.
|
Recall that $|X|$ denotes the size of a set $X$.
|
||||||
@ -168,14 +167,14 @@
|
|||||||
|
|
||||||
\item Compute $|E_1|$, $|E_2|$, and $|E|$. \par
|
\item Compute $|E_1|$, $|E_2|$, and $|E|$. \par
|
||||||
Recall that a set of size $n$ has $\binom{n}{k}$ subsets of size $k$.
|
Recall that a set of size $n$ has $\binom{n}{k}$ subsets of size $k$.
|
||||||
|
|
||||||
\item Conclude that for any $n$ and $k$ satisfying the conditions above,
|
\item Conclude that for any $n$ and $k$ satisfying the conditions above,
|
||||||
$$
|
$$
|
||||||
\binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}
|
\binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
\item For $t \in \mathbb{N}$, show that $\binom{2t}{t}$ is even.
|
\item For $t \in \mathbb{N}$, show that $\binom{2t}{t}$ is even.
|
||||||
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
@ -209,7 +208,7 @@
|
|||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
|
|
||||||
\begin{itemize}[itemsep=4mm]
|
\begin{itemize}[itemsep=4mm]
|
||||||
\item Let $f: X \to Y$ be an injective function. Show that for any two functions $g: Z \to X$ and $h: Z \to X$,
|
\item Let $f: X \to Y$ be an injective function. Show that for any two functions $g: Z \to X$ and $h: Z \to X$,
|
||||||
if $f \circ g = f \circ h$ from $Z$ to $Y$ then $g = h$ from $Z$ to $X$. \par
|
if $f \circ g = f \circ h$ from $Z$ to $Y$ then $g = h$ from $Z$ to $X$. \par
|
||||||
@ -261,7 +260,7 @@
|
|||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user