From 5cfba49bf0825f46d1eecd16cfbc2fd7716504f7 Mon Sep 17 00:00:00 2001 From: Mark Date: Wed, 10 Jan 2024 21:00:01 -0800 Subject: [PATCH] Whitespace --- Advanced/Intro to Proofs/main.tex | 17 ++++++++--------- 1 file changed, 8 insertions(+), 9 deletions(-) diff --git a/Advanced/Intro to Proofs/main.tex b/Advanced/Intro to Proofs/main.tex index aa75495..4ce45b1 100755 --- a/Advanced/Intro to Proofs/main.tex +++ b/Advanced/Intro to Proofs/main.tex @@ -20,7 +20,6 @@ - \problem{} We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$. We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par @@ -30,11 +29,11 @@ \begin{itemize}[itemsep=4mm] \item Show that the product of two odd integers is odd. - + \item Let $a, b \in \mathbb{Z}, a \neq 0$. We say $a$ \textit{divides} $b$ and write $a~|~b$ if there is a $k \in \mathbb{Z}$ so that $ak = b$. - + Show that $a~|~b \implies a~|~2b$ \item @@ -63,7 +62,7 @@ \problem{} Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$ - + \vspace{2mm} \begin{itemize}[itemsep=4mm] \item Show that $\sqrt{2}$ is irrational. @@ -120,7 +119,7 @@ \begin{itemize}[itemsep=4mm] \item Make sense of the conditions on $E$. - + \item The \textit{degree} of a vertex $a$ is the number of edges connected to that vertex. \par We'll denote this as $d(a)$. Write a formal definition of this function using set-builder notation and the definitions above. Recall that $|X|$ denotes the size of a set $X$. @@ -168,14 +167,14 @@ \item Compute $|E_1|$, $|E_2|$, and $|E|$. \par Recall that a set of size $n$ has $\binom{n}{k}$ subsets of size $k$. - + \item Conclude that for any $n$ and $k$ satisfying the conditions above, $$ \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k} $$ \item For $t \in \mathbb{N}$, show that $\binom{2t}{t}$ is even. - + \end{itemize} @@ -209,7 +208,7 @@ \problem{} - + \begin{itemize}[itemsep=4mm] \item Let $f: X \to Y$ be an injective function. Show that for any two functions $g: Z \to X$ and $h: Z \to X$, if $f \circ g = f \circ h$ from $Z$ to $Y$ then $g = h$ from $Z$ to $X$. \par @@ -261,7 +260,7 @@ \vfill \pagebreak - +