Cleanup
This commit is contained in:
parent
946752ef1b
commit
596151b251
@ -57,225 +57,7 @@
|
|||||||
Based on a book of the same name.
|
Based on a book of the same name.
|
||||||
}
|
}
|
||||||
|
|
||||||
\section{Introduction}
|
\input{parts/00 intro}
|
||||||
|
\input{parts/01 tmam}
|
||||||
A certain enchanted forest is inhabited by talking birds. Each of these birds has a name, and will respond whenever it hears the name of another. Suppose you are exploring this forest and come across the bird $A$. You call the name of bird $B$. $A$ hears you and responds with the name of some other bird, which we will designate $AB$.
|
|
||||||
|
|
||||||
Bird $AB$ is, by definition, $A$'s response to $B$.
|
|
||||||
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
As you wander around this forest, you quickly discover two interesting facts:
|
|
||||||
\begin{enumerate}[itemsep = 1mm]
|
|
||||||
\item $A$'s responds to $B$ mustn't be the same as $B$'s response to $A$.
|
|
||||||
\item Given three birds $A$, $B$, and $C$, $(AB)C$ and $A(BC)$ are not necessarily the same bird. \\
|
|
||||||
Bird $A(BC)$ is $A$'s response to bird $BC$, while $(AB)C$ is $AB$'s response to $C$. \\
|
|
||||||
Thus, $ABC$ is ambiguous. Parenthesis are mandatory.
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
You also find that this forest has two laws:
|
|
||||||
\begin{enumerate}[itemsep = 1mm]
|
|
||||||
\item $L_1$, \textit{The Law of Composition}: \\
|
|
||||||
For any two birds $A$ and $B$, there must be a bird $C$ so that $Cx = A(Bx)$
|
|
||||||
\item $L_2$, \textit{The Law of the Mockingbird}: \\
|
|
||||||
The forest must contain the Mockingbird $M$, which always satisfies $Mx = xx$. \\
|
|
||||||
In other words, the Mockingbird's response to any bird $x$ is the same as $x$'s response to itself.
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\definition{}
|
|
||||||
We say a bird $A$ is fond of a bird $B$ if $A$ responds to $B$ with $B$. \\
|
|
||||||
In other words, $A$ is fond of $B$ if $AB = B$.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\definition{}
|
|
||||||
We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$,
|
|
||||||
$$
|
|
||||||
Cx = A(Bx)
|
|
||||||
$$
|
|
||||||
In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\section{To Mock a Mockingbird}
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
The bear, a lifelong resident of the forest, tells you that any bird $A$ is fond of at least one other bird. \\
|
|
||||||
Complete his proof.
|
|
||||||
\begin{alltt}
|
|
||||||
let A \cmnt{Let A be any any bird.}
|
|
||||||
let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
|
|
||||||
|
|
||||||
\cmnt{The rest is up to you.}
|
|
||||||
CC = ??
|
|
||||||
\end{alltt}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{helpbox}
|
|
||||||
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
|
||||||
\texttt{Def:} $A$ is fond of $B$ if $AB = B$
|
|
||||||
\end{helpbox}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
\begin{alltt}
|
|
||||||
let A \cmnt{Let A be any any bird.}
|
|
||||||
let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
|
|
||||||
CC = A(MC)
|
|
||||||
= A(CC) \qed{}
|
|
||||||
\end{alltt}
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\problem{}
|
|
||||||
We say a bird $A$ is \textit{egocentric} if it is fond if itself.
|
|
||||||
|
|
||||||
Show that the laws of the forest guarantee that at least one bird is egocentric.
|
|
||||||
|
|
||||||
|
|
||||||
\begin{helpbox}
|
|
||||||
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
|
||||||
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
|
|
||||||
\texttt{Lem:} Any bird is fond of at least one bird.
|
|
||||||
\end{helpbox}
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
\begin{alltt}
|
|
||||||
\cmnt{We know M is fond of at least one bird.}
|
|
||||||
let E so that ME = E
|
|
||||||
|
|
||||||
ME = E \cmnt{By definition of fondness}
|
|
||||||
ME = EE \cmnt{By definition of M}
|
|
||||||
\thus{} EE = E \qed{}
|
|
||||||
\end{alltt}
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
|
||||||
This means that $Ax = Bx$.
|
|
||||||
|
|
||||||
\begin{helpbox}
|
|
||||||
\texttt{Def:} $Mx := xx$
|
|
||||||
\end{helpbox}
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
We know that $Mx = xx$. \\
|
|
||||||
|
|
||||||
From this definition, we see that $M$ agrees with any $x$ on $x$ itself.
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Take two birds $A$ and $B$. Let $C$ be their composition. \\
|
|
||||||
Show that $A$ must be agreeable if $C$ is agreeable. \\
|
|
||||||
The bear has again given you a hint.
|
|
||||||
\begin{alltt}
|
|
||||||
\cmnt{Given information}
|
|
||||||
let A, B
|
|
||||||
let Cx := A(Bx)
|
|
||||||
|
|
||||||
let D \cmnt{Arbitrary bird}
|
|
||||||
let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
|
|
||||||
Cy = ??
|
|
||||||
\end{alltt}
|
|
||||||
|
|
||||||
\begin{helpbox}[0.65]
|
|
||||||
\texttt{Def:} $A$ is agreeable if $Ax = Bx$ for all $B$ with some $x$. \\
|
|
||||||
\texttt{Law:} For any $A, B$, there is C defined by Cx = A(Bx)
|
|
||||||
\end{helpbox}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
\begin{alltt}
|
|
||||||
\cmnt{Given information}
|
|
||||||
let A, B
|
|
||||||
let Cx := A(Bx)
|
|
||||||
|
|
||||||
let D \cmnt{Arbitrary bird}
|
|
||||||
let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
|
|
||||||
Cy = Ey \cmnt{For some y, because C is agreeable}
|
|
||||||
\thus{} A(By) = Ey
|
|
||||||
\thus{} A(By) = D(By) \qed{}
|
|
||||||
\end{alltt}
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ defined by $Dx = A(B(Cx))$
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
\begin{alltt}
|
|
||||||
let A, B, C
|
|
||||||
|
|
||||||
\cmnt{Invoke the Law of Composition:}
|
|
||||||
let Q := BC
|
|
||||||
let D := AQ
|
|
||||||
|
|
||||||
D = AQ
|
|
||||||
= A(BC) \qed{}
|
|
||||||
\end{alltt}
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
|
|
||||||
Note that $x$ and $y$ may be the same bird. \\
|
|
||||||
Show that any two birds in this forest are compatible. \\
|
|
||||||
\begin{alltt}
|
|
||||||
let A, B
|
|
||||||
let Cx := A(Bx)
|
|
||||||
\end{alltt}
|
|
||||||
|
|
||||||
\begin{helpbox}
|
|
||||||
\texttt{Law:} Law of composition \\
|
|
||||||
\texttt{Lem:} Any bird is fond of at least one bird.
|
|
||||||
\end{helpbox}
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
\begin{alltt}
|
|
||||||
let A, B
|
|
||||||
|
|
||||||
let Cx := A(Bx) \cmnt{Composition}
|
|
||||||
let y := Cy \cmnt{Let C be fond of y}
|
|
||||||
|
|
||||||
Cy = y
|
|
||||||
\thus{} A(By) = y
|
|
||||||
|
|
||||||
let x := By \cmnt{Rename By to x}
|
|
||||||
Ax = y \qed{}
|
|
||||||
\end{alltt}
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that any bird that is fond of at least one bird is compatible with itself.
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
\begin{alltt}
|
|
||||||
let A
|
|
||||||
let x so that Ax := x
|
|
||||||
Ax = x \qed{}
|
|
||||||
\end{alltt}
|
|
||||||
That's it.
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
44
Advanced/Mock a Mockingbird/parts/00 intro.tex
Normal file
44
Advanced/Mock a Mockingbird/parts/00 intro.tex
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
A certain enchanted forest is inhabited by talking birds. Each of these birds has a name, and will respond whenever it hears the name of another. Suppose you are exploring this forest and come across the bird $A$. You call the name of bird $B$. $A$ hears you and responds with the name of some other bird, which we will designate $AB$.
|
||||||
|
|
||||||
|
Bird $AB$ is, by definition, $A$'s response to $B$.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
As you wander around this forest, you quickly discover two interesting facts:
|
||||||
|
\begin{enumerate}[itemsep = 1mm]
|
||||||
|
\item $A$'s responds to $B$ mustn't be the same as $B$'s response to $A$.
|
||||||
|
\item Given three birds $A$, $B$, and $C$, $(AB)C$ and $A(BC)$ are not necessarily the same bird. \\
|
||||||
|
Bird $A(BC)$ is $A$'s response to bird $BC$, while $(AB)C$ is $AB$'s response to $C$. \\
|
||||||
|
Thus, $ABC$ is ambiguous. Parenthesis are mandatory.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
You also find that this forest has two laws:
|
||||||
|
\begin{enumerate}[itemsep = 1mm]
|
||||||
|
\item $L_1$, \textit{The Law of Composition}: \\
|
||||||
|
For any two birds $A$ and $B$, there must be a bird $C$ so that $Cx = A(Bx)$
|
||||||
|
\item $L_2$, \textit{The Law of the Mockingbird}: \\
|
||||||
|
The forest must contain the Mockingbird $M$, which always satisfies $Mx = xx$. \\
|
||||||
|
In other words, the Mockingbird's response to any bird $x$ is the same as $x$'s response to itself.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
We say a bird $A$ is fond of a bird $B$ if $A$ responds to $B$ with $B$. \\
|
||||||
|
In other words, $A$ is fond of $B$ if $AB = B$.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$,
|
||||||
|
$$
|
||||||
|
Cx = A(Bx)
|
||||||
|
$$
|
||||||
|
In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
175
Advanced/Mock a Mockingbird/parts/01 tmam.tex
Normal file
175
Advanced/Mock a Mockingbird/parts/01 tmam.tex
Normal file
@ -0,0 +1,175 @@
|
|||||||
|
\section{To Mock a Mockingbird}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
The bear, a lifelong resident of the forest, tells you that any bird $A$ is fond of at least one other bird. \\
|
||||||
|
Complete his proof.
|
||||||
|
\begin{alltt}
|
||||||
|
let A \cmnt{Let A be any any bird.}
|
||||||
|
let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
|
||||||
|
|
||||||
|
\cmnt{The rest is up to you.}
|
||||||
|
CC = ??
|
||||||
|
\end{alltt}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{helpbox}
|
||||||
|
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
||||||
|
\texttt{Def:} $A$ is fond of $B$ if $AB = B$
|
||||||
|
\end{helpbox}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
let A \cmnt{Let A be any any bird.}
|
||||||
|
let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
|
||||||
|
CC = A(MC)
|
||||||
|
= A(CC) \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\problem{}
|
||||||
|
We say a bird $A$ is \textit{egocentric} if it is fond if itself.
|
||||||
|
|
||||||
|
Show that the laws of the forest guarantee that at least one bird is egocentric.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{helpbox}
|
||||||
|
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
||||||
|
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
|
||||||
|
\texttt{Lem:} Any bird is fond of at least one bird.
|
||||||
|
\end{helpbox}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
\cmnt{We know M is fond of at least one bird.}
|
||||||
|
let E so that ME = E
|
||||||
|
|
||||||
|
ME = E \cmnt{By definition of fondness}
|
||||||
|
ME = EE \cmnt{By definition of M}
|
||||||
|
\thus{} EE = E \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
||||||
|
This means that $Ax = Bx$.
|
||||||
|
|
||||||
|
\begin{helpbox}
|
||||||
|
\texttt{Def:} $Mx := xx$
|
||||||
|
\end{helpbox}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
We know that $Mx = xx$. \\
|
||||||
|
|
||||||
|
From this definition, we see that $M$ agrees with any $x$ on $x$ itself.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Take two birds $A$ and $B$. Let $C$ be their composition. \\
|
||||||
|
Show that $A$ must be agreeable if $C$ is agreeable. \\
|
||||||
|
The bear has again given you a hint.
|
||||||
|
\begin{alltt}
|
||||||
|
\cmnt{Given information}
|
||||||
|
let A, B
|
||||||
|
let Cx := A(Bx)
|
||||||
|
|
||||||
|
let D \cmnt{Arbitrary bird}
|
||||||
|
let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
|
||||||
|
Cy = ??
|
||||||
|
\end{alltt}
|
||||||
|
|
||||||
|
\begin{helpbox}[0.65]
|
||||||
|
\texttt{Def:} $A$ is agreeable if $Ax = Bx$ for all $B$ with some $x$. \\
|
||||||
|
\texttt{Law:} For any $A, B$, there is C defined by Cx = A(Bx)
|
||||||
|
\end{helpbox}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
\cmnt{Given information}
|
||||||
|
let A, B
|
||||||
|
let Cx := A(Bx)
|
||||||
|
|
||||||
|
let D \cmnt{Arbitrary bird}
|
||||||
|
let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
|
||||||
|
Cy = Ey \cmnt{For some y, because C is agreeable}
|
||||||
|
\thus{} A(By) = Ey
|
||||||
|
\thus{} A(By) = D(By) \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ defined by $Dx = A(B(Cx))$
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
let A, B, C
|
||||||
|
|
||||||
|
\cmnt{Invoke the Law of Composition:}
|
||||||
|
let Q := BC
|
||||||
|
let D := AQ
|
||||||
|
|
||||||
|
D = AQ
|
||||||
|
= A(BC) \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
|
||||||
|
Note that $x$ and $y$ may be the same bird. \\
|
||||||
|
Show that any two birds in this forest are compatible. \\
|
||||||
|
\begin{alltt}
|
||||||
|
let A, B
|
||||||
|
let Cx := A(Bx)
|
||||||
|
\end{alltt}
|
||||||
|
|
||||||
|
\begin{helpbox}
|
||||||
|
\texttt{Law:} Law of composition \\
|
||||||
|
\texttt{Lem:} Any bird is fond of at least one bird.
|
||||||
|
\end{helpbox}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
let A, B
|
||||||
|
|
||||||
|
let Cx := A(Bx) \cmnt{Composition}
|
||||||
|
let y := Cy \cmnt{Let C be fond of y}
|
||||||
|
|
||||||
|
Cy = y
|
||||||
|
\thus{} A(By) = y
|
||||||
|
|
||||||
|
let x := By \cmnt{Rename By to x}
|
||||||
|
Ax = y \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that any bird that is fond of at least one bird is compatible with itself.
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
let A
|
||||||
|
let x so that Ax := x
|
||||||
|
Ax = x \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
That's it.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user