Added linear maps handout
This commit is contained in:
198
Advanced/Linear Maps/parts/3 matrices.tex
Normal file
198
Advanced/Linear Maps/parts/3 matrices.tex
Normal file
@ -0,0 +1,198 @@
|
||||
\section{Matrices}
|
||||
|
||||
\definition{}
|
||||
A \textit{matrix} is a two-dimensional array of numbers: \\
|
||||
$$
|
||||
A =
|
||||
\begin{bmatrix}
|
||||
1 & 2 & 3 \\
|
||||
4 & 5 & 6
|
||||
\end{bmatrix}
|
||||
$$
|
||||
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
||||
|
||||
\problem{}
|
||||
Draw a $3 \times 2$ matrix.
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{Matrices as Transformations}
|
||||
We can define the \say{product\footnotemark{}} of a matrix $A$ and a vector $v$:
|
||||
\footnotetext{This is an uncommon word to use in this context. You will soon see why.}
|
||||
$$
|
||||
Av =
|
||||
\begin{bmatrix}
|
||||
1 & 2 & 3 \\
|
||||
4 & 5 & 6
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
a \\ b \\ c
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
1a + 2b + 3c \\
|
||||
4a + 5b + 6c
|
||||
\end{bmatrix}
|
||||
$$
|
||||
Look closely. Each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
||||
|
||||
$$
|
||||
Av =
|
||||
\begin{bmatrix}
|
||||
\text{---} a_1 \text{---} \\
|
||||
\text{---} a_2 \text{---}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
| \\
|
||||
v \\
|
||||
| \\
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
r_1v \\
|
||||
r_2v
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
||||
|
||||
\problem{}
|
||||
Compute the following \say{product}:
|
||||
|
||||
$$
|
||||
\begin{bmatrix}
|
||||
2 & 9 \\
|
||||
7 & 5 \\
|
||||
3 & 4
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
5 \\ 3
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\generic{Remark:}
|
||||
It is a bit more interesting to think of matrix-vector multiplication in the following way: \\
|
||||
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
The problem:
|
||||
\vspace{2mm}
|
||||
|
||||
$$
|
||||
\begin{bmatrix}
|
||||
2 & 9 \\
|
||||
7 & 5 \\
|
||||
3 & 4
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
5 \\ 3
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
37 \\ 50 \\ 27
|
||||
\end{bmatrix}
|
||||
$$
|
||||
\end{center}
|
||||
\end{minipage}%
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
Top-input, right-output:
|
||||
\vspace{2mm}
|
||||
|
||||
\begin{tikzpicture}[>=stealth,thick,baseline]
|
||||
\matrix [
|
||||
matrix of math nodes,
|
||||
left delimiter={[},
|
||||
right delimiter={]}
|
||||
] (A) {
|
||||
2 & 9 \\
|
||||
7 & 5 \\
|
||||
3 & 4 \\
|
||||
};
|
||||
|
||||
\node[
|
||||
fit=(A-1-1)(A-1-1),
|
||||
inner xsep=0mm,inner ysep=3mm,
|
||||
label=above:5
|
||||
] (L) {};
|
||||
\draw[->, gray] (L.north) -- ([yshift=0mm]A-1-1.north);
|
||||
|
||||
\node[
|
||||
fit=(A-1-2)(A-1-2),
|
||||
inner xsep=0mm,inner ysep=3mm,
|
||||
label=above:3
|
||||
] (R) {};
|
||||
\draw[->, gray] (R.north) -- ([yshift=0mm]A-1-2.north);
|
||||
|
||||
|
||||
\node[
|
||||
fit=(A-1-2)(A-1-2),
|
||||
inner xsep=8mm,inner ysep=0mm,
|
||||
label=right:{$10 + 27 = 37$}
|
||||
](Y) {};
|
||||
\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y);
|
||||
|
||||
\node[
|
||||
fit=(A-2-2)(A-2-2),
|
||||
inner xsep=8mm,inner ysep=0mm,
|
||||
label=right:{$35 + 15 = 50$}
|
||||
](H) {};
|
||||
\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H);
|
||||
|
||||
\node[
|
||||
fit=(A-3-2)(A-3-2),
|
||||
inner xsep=8mm,inner ysep=0mm,
|
||||
label=right:{$15 + 12 = 27$}
|
||||
](N) {};
|
||||
\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}%
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Be aware that this is only a model for intuition. \\
|
||||
Make sure you understand the dot product definition on the previous page.
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
\theorem{}<thebigtheorem>
|
||||
Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\
|
||||
Conversely, every $n \times m$ matrix represents a liner map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In other words, \textbf{matrices are linear transformations}. \\
|
||||
If you only learn only one thing today, this should be it.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<prooffwd>
|
||||
Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
|
||||
Before you start, answer the following questions:
|
||||
\begin{itemize}
|
||||
\item What is $A$?
|
||||
\item What is $v$?
|
||||
\item What are their sizes?
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<proofback>
|
||||
Show that any linear transformation can be written as a matrix.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Does \ref{thebigtheorem} hold in arbitrary vector spaces? \\
|
||||
Repeat \ref{prooffwd} and \ref{proofback} using only axioms.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user