Added linear maps handout
This commit is contained in:
92
Advanced/Linear Maps/parts/1 spaces.tex
Normal file
92
Advanced/Linear Maps/parts/1 spaces.tex
Normal file
@ -0,0 +1,92 @@
|
||||
\definition{Vector Spaces}
|
||||
A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
|
||||
\begin{itemize}[itemsep = 2mm]
|
||||
\item A set $V$, the elements of which are called \textit{vectors}
|
||||
\item An operation called \textit{vector addition}, denoted $+$ \\
|
||||
Vector addition operates on two elements of $V$. \\
|
||||
|
||||
\item An operation called \textit{scalar multilplication}, denoted $\times$ \\
|
||||
Scalar multiplication multiplies an element of $V$ by an element of $\mathbb{F}$. \\
|
||||
Any element of $\mathbb{F}$ is called a \textit{scalar}.
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\textbf{Note:}
|
||||
The same symbols are used for additions and multiplications in both $\mathbb{F}$ and $V$. \\
|
||||
Be careful, since \textit{these are different operations!} \\
|
||||
Make sure you're aware of the context of each $+$ and $\times$ as you work through this handout.
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
Vector addition and multiplication must have the following properties. \\
|
||||
Note that $x, y, z \in V$ and $a, b\in \mathbb{F}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
% [t] and \vspace{0pt} ensure alignment at top
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
\begin{tabular}{l | r@{=}l }
|
||||
\hline
|
||||
\multicolumn{3}{|c|}{Properties of vector addition} \\
|
||||
\hline
|
||||
Closure & \multicolumn{2}{c}{$x+y \in V$} \\
|
||||
Associativity & $(x+y)+z~$&$~x+y+z$ \\
|
||||
Commutativity & $x+y~$&$~y+x$ \\
|
||||
Distributivity & $x(y+z)~$&$~xy + xz$ \\
|
||||
Identity & $x+0~$&$~x$ \\
|
||||
Inverse & $x + (-x)~$&$~0$
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{minipage}%
|
||||
\hfill%
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
\begin{tabular}{l | r@{=}l }
|
||||
\hline
|
||||
\multicolumn{3}{|c|}{Properties of vector multiplication} \\
|
||||
\hline
|
||||
Closure & \multicolumn{2}{c}{$ax \in V$} \\
|
||||
Distributivity & $a(x+y)~$&$~ax+ay$ \\
|
||||
& $(a+b)x~$&$~ax+bx$ \\
|
||||
Compatibility$^*$ & $(ab)x~$&$~x(ba)$ \\
|
||||
Identity & $a+0~$&$~a$
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
\definition{}
|
||||
There is a good chance you are familiar with basic vector arithmetic. \\
|
||||
Here's a quick review:
|
||||
\begin{itemize}
|
||||
\item Scalar multiplication is done elementwise: $3 \times [a, b, c] = [3a, 3b, 3c]$.
|
||||
\item Vector addition is similar: $[a, b, c] + [1, 2, 3] = [a+1,~b+2,~c+3]$.
|
||||
\item Vector addition is not valid for vectors of different sizes.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\definition{}
|
||||
We usually use the \textit{dot product} as our vector product. It is defined as follows. \\
|
||||
Given two vectors $a, b \in \mathbb{R}^n$, the dot product $a \cdot b$ is $\sum_1^n a_ib_i$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In other words, if $a = [1, 2, 3]$ and $b = [4, 5, 6]$,
|
||||
$$
|
||||
a \cdot b = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32
|
||||
$$
|
||||
As you may expect, the dot product $ab$ is valid iff $a$ and $b$ are the same size.
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that the dot product satisfies the properties of a vector product listed above. \\
|
||||
Conclude that $\mathbb{R}^n$ is a vector space over $\mathbb{R}$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
Reference in New Issue
Block a user