Added link section
This commit is contained in:
parent
0b2f3efe1b
commit
4a67ad5c81
BIN
Advanced/Knots/images/borromean.png
Normal file
BIN
Advanced/Knots/images/borromean.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 223 KiB |
BIN
Advanced/Knots/images/brunnian.png
Normal file
BIN
Advanced/Knots/images/brunnian.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 143 KiB |
BIN
Advanced/Knots/images/whitehead a.png
Normal file
BIN
Advanced/Knots/images/whitehead a.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 202 KiB |
BIN
Advanced/Knots/images/whitehead b.png
Normal file
BIN
Advanced/Knots/images/whitehead b.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 215 KiB |
@ -37,8 +37,25 @@
|
|||||||
|
|
||||||
\input{parts/0 intro.tex}
|
\input{parts/0 intro.tex}
|
||||||
\input{parts/1 composition.tex}
|
\input{parts/1 composition.tex}
|
||||||
|
\input{parts/2 links.tex}
|
||||||
|
|
||||||
|
|
||||||
|
% Make sure the knot table is on an odd page
|
||||||
|
% so it may be removed in a double-sided
|
||||||
|
% handout.
|
||||||
|
\checkoddpage
|
||||||
|
\ifoddpage\else
|
||||||
|
\vspace*{\fill}
|
||||||
|
\begin{center}
|
||||||
|
{
|
||||||
|
\Large
|
||||||
|
\textbf{This page isn't empty.}
|
||||||
|
}
|
||||||
|
\end{center}
|
||||||
|
\vspace{\fill}
|
||||||
|
\pagebreak
|
||||||
|
\fi
|
||||||
|
|
||||||
\input{parts/table}
|
\input{parts/table}
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
@ -82,13 +82,9 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
|||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{minipage}[t]{0.48\textwidth}
|
\begin{minipage}[t]{0.48\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
\begin{tikzpicture}[baseline=(p)]
|
||||||
\begin{knot}
|
|
||||||
\strand
|
\draw[circle] (0,0) circle (1);
|
||||||
(0,2) .. controls +(1.5,0) and +(1.5,0) ..
|
|
||||||
(0, 0) .. controls +(-1.5,0) and +(-1.5,0) ..
|
|
||||||
(0,2);
|
|
||||||
\end{knot}
|
|
||||||
|
|
||||||
\coordinate (p) at (current bounding box.center);
|
\coordinate (p) at (current bounding box.center);
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
@ -98,7 +94,6 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
|||||||
\begin{minipage}[t]{0.48\textwidth}
|
\begin{minipage}[t]{0.48\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||||
|
|
||||||
\clip (-2,-1.7) rectangle + (4, 4);
|
\clip (-2,-1.7) rectangle + (4, 4);
|
||||||
|
|
||||||
\begin{knot}[
|
\begin{knot}[
|
||||||
@ -122,16 +117,16 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
|||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Below are the only four distinct knots with only one crossing. \par
|
Below are the only four knots with one crossing. \par
|
||||||
Show that no nontrivial knot can have has fewer than three crossings. \par
|
Show that every nontrivial knot more than two crossings. \par
|
||||||
\hint{There are 4 such knots. What are they?}
|
\hint{There are four knots with two crossings. What are they?}
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
|
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
Draw all four. Each is isomorphic to the unknot.
|
Draw them all. Each is isomorphic to the unknot.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
@ -147,7 +142,7 @@ A wire or an extension cord may help.
|
|||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
As we said before, there are many ways to draw the same knot. \par
|
As we said before, there are many ways to draw the same knot. \par
|
||||||
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot.
|
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight knot}.
|
||||||
|
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
@ -157,7 +152,8 @@ We call each drawing a \textit{projection}. Below are four projections of the \t
|
|||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Convince yourself that these are equivalent.
|
Convince yourself that these are equivalent. \par
|
||||||
|
Try to deform them into each other with a cord!
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
@ -53,8 +53,9 @@ Use a pencil or a cord to compose the figure-eight knot with itself.
|
|||||||
\pagebreak{}
|
\pagebreak{}
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
The following knots are composite. What are their prime components? \par
|
The following knots are composite. \par
|
||||||
Try to make them with a cord! \par
|
What are their prime components? \par
|
||||||
|
Try to make them with a cord. \par
|
||||||
\hint{Use the table at the back of this handout to decompose the second knot.}
|
\hint{Use the table at the back of this handout to decompose the second knot.}
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
|
76
Advanced/Knots/parts/2 links.tex
Normal file
76
Advanced/Knots/parts/2 links.tex
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
\section{Links}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A \textit{link} is a set of knots intertwined with each other. \par
|
||||||
|
Just as with knots, we say that two links are \textit{isomorphic} if one can be deformed into the other.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
The \textit{Whitehead link} is one of the simplest links we can produce. \par
|
||||||
|
It consists of two knots, so we say it is a \textit{link of two components}.
|
||||||
|
Two projections of the Whitehead link are shown below.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.27\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/whitehead a.png}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.25\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/whitehead b.png}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill~
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
The \textit{$n$-unlink} is the link that consists of $n$ disjoint unknots. \par
|
||||||
|
The 3-unlink is shown below:
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
|
||||||
|
\draw[circle] (0,0) circle (0.7);
|
||||||
|
\draw[circle] (2,0) circle (0.7);
|
||||||
|
\draw[circle] (4,0) circle (0.7);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
We say a nontrivial link is \textit{Brunnian} if we get an $n$-unlink after removing any component.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
The \textit{Borromean Rings} are a common example of this. If we were to cut any of the three rings, the other two would fall apart.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[height=3cm]{images/borromean.png}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find a Brunnian link with four components.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find a Brunnian link with $n$ components.
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=40mm]{images/brunnian.png}
|
||||||
|
\end{center}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
@ -1,15 +1,16 @@
|
|||||||
\section{Table of Prime Knots}
|
\section{Table of Prime Knots}
|
||||||
|
A knot's \textit{crossing number} is the minimal number of crossings its projection must contain. In general, it is very difficult to determine a knot's crossing number.
|
||||||
|
|
||||||
|
\vspace{1mm}
|
||||||
|
|
||||||
This table contains the 15 smallest prime knots, ordered by crossing number. \par
|
This table contains the 15 smallest prime knots, ordered by crossing number. \par
|
||||||
Mirror images are not accounted for, even if the mirror image produces a nonisomorphic knot.
|
Mirror images are not included, even if the mirror image produces a nonisomorphic knot.
|
||||||
|
|
||||||
\vspace{5mm}
|
|
||||||
|
|
||||||
% Images are from the appendix of the Knot book.
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
|
% Images are from the appendix of the Knot book.
|
||||||
{
|
{
|
||||||
\def\w{25mm}
|
\def\w{24mm}
|
||||||
\foreach \l/\c/\r in {%
|
\foreach \l/\c/\r in {%
|
||||||
{3_1}/{4_1}/{5_1},%
|
{3_1}/{4_1}/{5_1},%
|
||||||
{5_2}/{6_1}/{6_2},%
|
{5_2}/{6_1}/{6_2},%
|
||||||
|
@ -17,6 +17,9 @@
|
|||||||
\fi
|
\fi
|
||||||
|
|
||||||
\tikzset{
|
\tikzset{
|
||||||
|
circle/.style = {
|
||||||
|
line width = 0.8mm,
|
||||||
|
},
|
||||||
knot diagram/every strand/.append style={
|
knot diagram/every strand/.append style={
|
||||||
line width = 0.8mm,
|
line width = 0.8mm,
|
||||||
black
|
black
|
||||||
|
Loading…
x
Reference in New Issue
Block a user