Added link section
This commit is contained in:
76
Advanced/Knots/parts/2 links.tex
Normal file
76
Advanced/Knots/parts/2 links.tex
Normal file
@ -0,0 +1,76 @@
|
||||
\section{Links}
|
||||
|
||||
\definition{}
|
||||
A \textit{link} is a set of knots intertwined with each other. \par
|
||||
Just as with knots, we say that two links are \textit{isomorphic} if one can be deformed into the other.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The \textit{Whitehead link} is one of the simplest links we can produce. \par
|
||||
It consists of two knots, so we say it is a \textit{link of two components}.
|
||||
Two projections of the Whitehead link are shown below.
|
||||
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.27\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/whitehead a.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.25\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/whitehead b.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
|
||||
\definition{}
|
||||
The \textit{$n$-unlink} is the link that consists of $n$ disjoint unknots. \par
|
||||
The 3-unlink is shown below:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
|
||||
\draw[circle] (0,0) circle (0.7);
|
||||
\draw[circle] (2,0) circle (0.7);
|
||||
\draw[circle] (4,0) circle (0.7);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\definition{}
|
||||
We say a nontrivial link is \textit{Brunnian} if we get an $n$-unlink after removing any component.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The \textit{Borromean Rings} are a common example of this. If we were to cut any of the three rings, the other two would fall apart.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[height=3cm]{images/borromean.png}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Find a Brunnian link with four components.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a Brunnian link with $n$ components.
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\includegraphics[width=40mm]{images/brunnian.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user