Added link section
This commit is contained in:
@ -82,13 +82,9 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
||||
\begin{center}
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||
\begin{knot}
|
||||
\strand
|
||||
(0,2) .. controls +(1.5,0) and +(1.5,0) ..
|
||||
(0, 0) .. controls +(-1.5,0) and +(-1.5,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
\begin{tikzpicture}[baseline=(p)]
|
||||
|
||||
\draw[circle] (0,0) circle (1);
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
\end{tikzpicture}
|
||||
@ -98,7 +94,6 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
\begin{knot}[
|
||||
@ -122,16 +117,16 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Below are the only four distinct knots with only one crossing. \par
|
||||
Show that no nontrivial knot can have has fewer than three crossings. \par
|
||||
\hint{There are 4 such knots. What are they?}
|
||||
Below are the only four knots with one crossing. \par
|
||||
Show that every nontrivial knot more than two crossings. \par
|
||||
\hint{There are four knots with two crossings. What are they?}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
Draw all four. Each is isomorphic to the unknot.
|
||||
Draw them all. Each is isomorphic to the unknot.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
@ -147,7 +142,7 @@ A wire or an extension cord may help.
|
||||
|
||||
\definition{}
|
||||
As we said before, there are many ways to draw the same knot. \par
|
||||
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot.
|
||||
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight knot}.
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
@ -157,7 +152,8 @@ We call each drawing a \textit{projection}. Below are four projections of the \t
|
||||
\vspace{2mm}
|
||||
|
||||
\problem{}
|
||||
Convince yourself that these are equivalent.
|
||||
Convince yourself that these are equivalent. \par
|
||||
Try to deform them into each other with a cord!
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -53,8 +53,9 @@ Use a pencil or a cord to compose the figure-eight knot with itself.
|
||||
\pagebreak{}
|
||||
|
||||
\problem{}
|
||||
The following knots are composite. What are their prime components? \par
|
||||
Try to make them with a cord! \par
|
||||
The following knots are composite. \par
|
||||
What are their prime components? \par
|
||||
Try to make them with a cord. \par
|
||||
\hint{Use the table at the back of this handout to decompose the second knot.}
|
||||
|
||||
\begin{center}
|
||||
|
76
Advanced/Knots/parts/2 links.tex
Normal file
76
Advanced/Knots/parts/2 links.tex
Normal file
@ -0,0 +1,76 @@
|
||||
\section{Links}
|
||||
|
||||
\definition{}
|
||||
A \textit{link} is a set of knots intertwined with each other. \par
|
||||
Just as with knots, we say that two links are \textit{isomorphic} if one can be deformed into the other.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The \textit{Whitehead link} is one of the simplest links we can produce. \par
|
||||
It consists of two knots, so we say it is a \textit{link of two components}.
|
||||
Two projections of the Whitehead link are shown below.
|
||||
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.27\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/whitehead a.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.25\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/whitehead b.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
|
||||
\definition{}
|
||||
The \textit{$n$-unlink} is the link that consists of $n$ disjoint unknots. \par
|
||||
The 3-unlink is shown below:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
|
||||
\draw[circle] (0,0) circle (0.7);
|
||||
\draw[circle] (2,0) circle (0.7);
|
||||
\draw[circle] (4,0) circle (0.7);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\definition{}
|
||||
We say a nontrivial link is \textit{Brunnian} if we get an $n$-unlink after removing any component.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The \textit{Borromean Rings} are a common example of this. If we were to cut any of the three rings, the other two would fall apart.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[height=3cm]{images/borromean.png}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Find a Brunnian link with four components.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a Brunnian link with $n$ components.
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\includegraphics[width=40mm]{images/brunnian.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,15 +1,16 @@
|
||||
\section{Table of Prime Knots}
|
||||
A knot's \textit{crossing number} is the minimal number of crossings its projection must contain. In general, it is very difficult to determine a knot's crossing number.
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
This table contains the 15 smallest prime knots, ordered by crossing number. \par
|
||||
Mirror images are not accounted for, even if the mirror image produces a nonisomorphic knot.
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
% Images are from the appendix of the Knot book.
|
||||
Mirror images are not included, even if the mirror image produces a nonisomorphic knot.
|
||||
|
||||
\vfill
|
||||
|
||||
% Images are from the appendix of the Knot book.
|
||||
{
|
||||
\def\w{25mm}
|
||||
\def\w{24mm}
|
||||
\foreach \l/\c/\r in {%
|
||||
{3_1}/{4_1}/{5_1},%
|
||||
{5_2}/{6_1}/{6_2},%
|
||||
|
Reference in New Issue
Block a user