Mockingbird edits
This commit is contained in:
parent
9927c8ff43
commit
48ac646ee4
@ -18,9 +18,9 @@ As you wander around this forest, you quickly discover two interesting facts:
|
|||||||
|
|
||||||
You also find that this forest has two laws:
|
You also find that this forest has two laws:
|
||||||
\begin{enumerate}[itemsep = 1mm]
|
\begin{enumerate}[itemsep = 1mm]
|
||||||
\item $L_1$, \textit{The Law of Composition}: \\
|
\item \textit{The Law of Composition}: \\
|
||||||
For any two birds $A$ and $B$, there must be a bird $C$ so that $Cx = A(Bx)$
|
For any two birds $A$ and $B$, there must be a bird $C$ so that $Cx = A(Bx)$
|
||||||
\item $L_2$, \textit{The Law of the Mockingbird}: \\
|
\item \textit{The Law of the Mockingbird}: \\
|
||||||
The forest must contain the Mockingbird $M$, which always satisfies $Mx = xx$. \\
|
The forest must contain the Mockingbird $M$, which always satisfies $Mx = xx$. \\
|
||||||
In other words, the Mockingbird's response to any bird $x$ is the same as $x$'s response to itself.
|
In other words, the Mockingbird's response to any bird $x$ is the same as $x$'s response to itself.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
@ -54,13 +54,12 @@ Show that the laws of the forest guarantee that at least one bird is egocentric.
|
|||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\definition{}
|
||||||
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
||||||
In other words, $A$ is agreeable if $Ax = Bx$ for some $x$ for all $B$.
|
In other words, $A$ is agreeable if $Ax = Bx$ for some $x$ for all $B$.
|
||||||
|
|
||||||
\begin{helpbox}
|
\problem{}
|
||||||
\texttt{Def:} $Mx := xx$
|
Is the Mockingbird agreeable?
|
||||||
\end{helpbox}
|
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
We know that $Mx = xx$. \\
|
We know that $Mx = xx$. \\
|
||||||
@ -115,11 +114,11 @@ Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$
|
|||||||
\lineno{} let A, B, C
|
\lineno{} let A, B, C
|
||||||
\lineno{}
|
\lineno{}
|
||||||
\lineno{} \cmnt{Invoke the Law of Composition:}
|
\lineno{} \cmnt{Invoke the Law of Composition:}
|
||||||
\lineno{} let Q = BC
|
\lineno{} let Qx = B(Cx)
|
||||||
\lineno{} let D = AQ
|
\lineno{} let Dx = A(Qx)
|
||||||
\lineno{}
|
\lineno{}
|
||||||
\lineno{} D = AQ
|
\lineno{} Dx = A(Qx)
|
||||||
\lineno{} = A(BC) \qed{}
|
\lineno{} = A(B(Cx)) \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
@ -16,9 +16,8 @@ Say $A$ is fixated on $B$. Is $A$ fond of $B$?
|
|||||||
\begin{solution}
|
\begin{solution}
|
||||||
Yes! See the following proof.
|
Yes! See the following proof.
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} let B
|
\lineno{} let A
|
||||||
\lineno{} let B
|
\lineno{} let B so that Ax = B
|
||||||
\lineno{} let A so that Ax = B
|
|
||||||
\lineno{} \thus{} AB = B \qed{}
|
\lineno{} \thus{} AB = B \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
@ -39,8 +38,8 @@ Show that an egocenteric Kestrel is hopelessly egocentric
|
|||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} KK = K
|
\lineno{} KK = K
|
||||||
\lineno{} \thus{} (KK)y = K
|
\lineno{} \thus{} (KK)y = K \cmnt{By definition of the Kestrel}
|
||||||
\lineno{} \thus{} Ky = K \qed{}
|
\lineno{} \thus{} Ky = K \qed{} \cmnt{By 01}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@ -50,7 +49,7 @@ Show that an egocenteric Kestrel is hopelessly egocentric
|
|||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Assume the forest contains a Kestrel. \\
|
Assume the forest contains a Kestrel. \\
|
||||||
Given $L_1$ and $L_2$, show that at least one bird is hopelessly egocentric.
|
Given the Law of Composition and the Law of the Mockingbird, show that at least one bird is hopelessly egocentric.
|
||||||
|
|
||||||
\begin{helpbox}[0.75]
|
\begin{helpbox}[0.75]
|
||||||
\texttt{Def:} $K$ is defined by $(Kx)y = x$ \\
|
\texttt{Def:} $K$ is defined by $(Kx)y = x$ \\
|
||||||
@ -116,7 +115,7 @@ Show that if $K$ is fond of $Kx$, $K$ is fond of $x$.
|
|||||||
An egocentric Kestrel must be extremely lonely. Why is this?
|
An egocentric Kestrel must be extremely lonely. Why is this?
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
If a Kestrel is egocenteric, it must be the only bird in the forest:
|
If a Kestrel is egocenteric, it must be the only bird in the forest!
|
||||||
|
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} \cmnt{Given}
|
\lineno{} \cmnt{Given}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user