Mockingbird edits
This commit is contained in:
@ -54,13 +54,12 @@ Show that the laws of the forest guarantee that at least one bird is egocentric.
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
\definition{}
|
||||
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
||||
In other words, $A$ is agreeable if $Ax = Bx$ for some $x$ for all $B$.
|
||||
|
||||
\begin{helpbox}
|
||||
\texttt{Def:} $Mx := xx$
|
||||
\end{helpbox}
|
||||
\problem{}
|
||||
Is the Mockingbird agreeable?
|
||||
|
||||
\begin{solution}
|
||||
We know that $Mx = xx$. \\
|
||||
@ -115,11 +114,11 @@ Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$
|
||||
\lineno{} let A, B, C
|
||||
\lineno{}
|
||||
\lineno{} \cmnt{Invoke the Law of Composition:}
|
||||
\lineno{} let Q = BC
|
||||
\lineno{} let D = AQ
|
||||
\lineno{} let Qx = B(Cx)
|
||||
\lineno{} let Dx = A(Qx)
|
||||
\lineno{}
|
||||
\lineno{} D = AQ
|
||||
\lineno{} = A(BC) \qed{}
|
||||
\lineno{} Dx = A(Qx)
|
||||
\lineno{} = A(B(Cx)) \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
|
Reference in New Issue
Block a user