Post-class edits
This commit is contained in:
parent
e3fd62c791
commit
47de89c2c4
@ -5,10 +5,6 @@
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
% Typewriter tabs
|
||||
\usepackage{tabto}
|
||||
\TabPositions{1cm, 2cm, 3cm, 4cm, 5cm, 6cm, 7cm, 8cm}
|
||||
|
||||
% for \coloneqq, a centered :=
|
||||
\usepackage{mathtools}
|
||||
|
||||
|
@ -90,16 +90,16 @@ For example, $x$ is a free variable in the formula $\varphi(x) = x > 0$. \par
|
||||
$\varphi(3)$ is true and $\varphi(-3)$ is false.
|
||||
|
||||
\definition{Definable Elements}
|
||||
Say $S$ is a with a universe $U$. \par
|
||||
Say $S$ is a structure with a universe $U$. \par
|
||||
We say an element $e \in U$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
|
||||
|
||||
|
||||
\problem{}
|
||||
Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$? \par
|
||||
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$}
|
||||
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.}
|
||||
|
||||
\begin{solution}
|
||||
$-2 \notin \mathbb{Z}^+$, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
|
||||
$2$ is the only element in $\mathbb{Z}^+$ that satisfies $[x \text{ where } x \times x = 4]$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
@ -111,16 +111,23 @@ Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr
|
||||
\begin{solution}
|
||||
This isn't possible. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
|
||||
We have no way to distinguish between negative and positive numbers.
|
||||
|
||||
\begin{instructornote}
|
||||
Actually, it is. Bonus problem: how? \par
|
||||
Do this after understanding quantifiers.
|
||||
\end{instructornote}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What numbers are definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
|
||||
What numbers are definable in the structure $\Bigl( \mathbb{R}^+_0 ~\big|~ \{1, 2, \div \} \Bigr)$?
|
||||
|
||||
\begin{solution}
|
||||
With the tools we have so far, we can only define powers of two, positive and negative.
|
||||
We can define powers of two, positive and negative.
|
||||
|
||||
If you're clever, you can define many more: $\sqrt{2}, \sqrt[3]{2}, ...$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
@ -37,22 +37,22 @@ Which are true in $\mathbb{R}^+_0$? \par
|
||||
|
||||
\item $\forall xy ~ \exists z ~ (x < z < y)$ \tab \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$}
|
||||
|
||||
\item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \tab~\tab \note{Solution is below.}
|
||||
\item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ %\tab~\tab \note{Solution is below.}
|
||||
\end{itemize}
|
||||
|
||||
\begin{examplesolution}
|
||||
Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par
|
||||
If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par
|
||||
which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$
|
||||
\end{examplesolution}
|
||||
%\begin{examplesolution}
|
||||
% Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par
|
||||
%
|
||||
% \vspace{4mm}
|
||||
%
|
||||
% Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par
|
||||
% If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par
|
||||
% which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par
|
||||
%
|
||||
% \vspace{4mm}
|
||||
%
|
||||
% Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$
|
||||
%\end{examplesolution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
@ -32,21 +32,28 @@ Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \p
|
||||
So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
|
||||
Remember---we can only use symbols that are available in our structure!
|
||||
|
||||
\problem{}
|
||||
Is the empty set definable in any structure?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $\{0, 1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\begin{instructornote}
|
||||
Here's an interesting fact:
|
||||
|
||||
A finite set of definable elements is always definable. Why? \par
|
||||
An infinite set of definable elements may not be definable.
|
||||
\end{instructornote}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
@ -84,7 +91,9 @@ Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \par
|
||||
\hint{We can't formally define a relation yet. Don't worry about that for now. \\
|
||||
You can repharase this question as \say{given $a,b \in \mathbb{Z}$, can you write a sentence that is true iff $a < b$?}}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
@ -94,7 +103,7 @@ Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
|
||||
The relation $a \diamond b$ holds if $| a - b | = 1$
|
||||
|
||||
\problempart{}
|
||||
Define the empty set in $S$.
|
||||
Define 0 in $S$.
|
||||
|
||||
\problempart{}
|
||||
Define $\{-1, 1\}$ in $S$.
|
||||
@ -106,10 +115,12 @@ Define $\{-2, 2\}$ in $S$.
|
||||
|
||||
\problem{}
|
||||
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
|
||||
Let $S$ be the stucture $( P ~|~ \{\subseteq\} )$ \par
|
||||
Let $S$ be the stucture $( P ~|~ \{\subseteq\})$ \par
|
||||
|
||||
\problempart{}
|
||||
Show that the empty set is definable in $S$.
|
||||
Show that the empty set is definable in $S$. \par
|
||||
\hint{Defining $\{\}$ with $\{x ~|~ x \neq x\}$ is \textbf{not} what we need here. \\
|
||||
We need $\varnothing \in P$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.}
|
||||
|
||||
\problempart{}
|
||||
Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
|
||||
|
Loading…
x
Reference in New Issue
Block a user