Post-class edits
This commit is contained in:
@ -32,21 +32,28 @@ Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \p
|
||||
So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
|
||||
Remember---we can only use symbols that are available in our structure!
|
||||
|
||||
\problem{}
|
||||
Is the empty set definable in any structure?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $\{0, 1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\begin{instructornote}
|
||||
Here's an interesting fact:
|
||||
|
||||
A finite set of definable elements is always definable. Why? \par
|
||||
An infinite set of definable elements may not be definable.
|
||||
\end{instructornote}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
@ -84,7 +91,9 @@ Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \par
|
||||
\hint{We can't formally define a relation yet. Don't worry about that for now. \\
|
||||
You can repharase this question as \say{given $a,b \in \mathbb{Z}$, can you write a sentence that is true iff $a < b$?}}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
@ -94,7 +103,7 @@ Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
|
||||
The relation $a \diamond b$ holds if $| a - b | = 1$
|
||||
|
||||
\problempart{}
|
||||
Define the empty set in $S$.
|
||||
Define 0 in $S$.
|
||||
|
||||
\problempart{}
|
||||
Define $\{-1, 1\}$ in $S$.
|
||||
@ -106,10 +115,12 @@ Define $\{-2, 2\}$ in $S$.
|
||||
|
||||
\problem{}
|
||||
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
|
||||
Let $S$ be the stucture $( P ~|~ \{\subseteq\} )$ \par
|
||||
Let $S$ be the stucture $( P ~|~ \{\subseteq\})$ \par
|
||||
|
||||
\problempart{}
|
||||
Show that the empty set is definable in $S$.
|
||||
Show that the empty set is definable in $S$. \par
|
||||
\hint{Defining $\{\}$ with $\{x ~|~ x \neq x\}$ is \textbf{not} what we need here. \\
|
||||
We need $\varnothing \in P$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.}
|
||||
|
||||
\problempart{}
|
||||
Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
|
||||
|
Reference in New Issue
Block a user