Added braids

This commit is contained in:
Mark 2023-05-05 14:29:21 -07:00
parent 3712e6becc
commit 3e16019521
5 changed files with 258 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 162 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 189 KiB

View File

@ -39,6 +39,7 @@
\input{parts/1 composition.tex}
\input{parts/2 links.tex}
\input{parts/3 sticks.tex}
\input{parts/4 braids.tex}
% Make sure the knot table is on an odd page

View File

@ -0,0 +1,205 @@
\section{Braids}
\definition{}
A \textit{braid} is a set of $n$ strings with fixed ends. Two braids are equivalent if they may be deformed into each other without disconnecting the strings. \par
Two braids are shown below.
\begin{center}
\begin{tikzpicture}
\pic[rotate=90, name prefix=braid] {
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
};
\braidbars{4}
\end{tikzpicture}
\hfill
\begin{tikzpicture}
\pic[rotate=90, name prefix=braid] {
braid = {s_2^{-1} s_3 s_2 s_1 s_1^{-1} s_2^{-1} s_3^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
};
\braidbars{4}
\end{tikzpicture}
\end{center}
\problem{}
Convince yourself that the braids above are equivalent.
\vfill
\pagebreak
\definition{}
A braid can be \textit{closed} by conecting its ends:
\begin{center}
\begin{tikzpicture}
\pic[rotate=90, name prefix=braid] {
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
};
\closebraid{4}
\widebraidbars{4}
\end{tikzpicture}
\end{center}
\problem{}
When will a closed braid form a knot? \par
When will a closed braid form a link?
\vfill
\problem{}
Draw a braid that creates a $3$-unlink when closed.
\vfill
\pagebreak
\problem{}<braidify>
Draw the following knots as closed braids.
\begin{center}
\hfill
\begin{minipage}[t]{0.13\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/trefoil.png}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.15\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/closed braid a.png}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.15\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/closed braid b.png}
\end{center}
\end{minipage}
\hfill~
\end{center}
\vfill
\pagebreak
\problem{}
We can describe the projection of a braid by listing which strings cross over and under each other as we move along the braid. \par
\vspace{2mm}
For example, consider a three-string braid. If the first string crosses over the second, we'll call that a $1$ crossing. If first string crosses \textbf{under} the second, we'll call that a $-1$ crossing.
\begin{center}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_1}
};
\end{tikzpicture} \par
\texttt{1} crossing
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_1^{-1}}
};
\end{tikzpicture} \par
\texttt{-1} crossing
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_2}
};
\end{tikzpicture} \par
\texttt{2} crossing
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_2^{-2}}
};
\end{tikzpicture} \par
\texttt{-2} crossing
\end{center}
\end{minipage}
\hfill~
\end{center}
\problem{}
Verify that the following is a $[1, 2, 1, -2, 1, 2]$ braid. \par
Read the braid right to left, with the \textbf{bottom} string numbered $1$.
\begin{center}
\begin{tikzpicture}
\pic[
rotate = 90,
name prefix = braid,
braid/number of strands = 3
] {
% When we rotate a braid
braid = {s_1 s_2 s_1 s_2^{-1} s_1 s_2}
};
\labelbraidstart{3}
\end{tikzpicture}
\end{center}
\vfill
\problem{}
Draw the five-string braid defined by $[1, 3, 4, -3, 2, 4]$
\begin{solution}
\begin{center}
\begin{tikzpicture}
\pic[
rotate = 90,
name prefix = braid,
braid/number of strands = 5
] {
braid = {s_1 s_3 s_4 s_3^{-1} s_2 s_4}
};
\labelbraidstart{5}
\labelbraidend{5}
\end{tikzpicture}
\end{center}
\end{solution}
\vfill
\pagebreak
\problem{}
Identify the knot generated by the 4-string braid $[(-1, 2, 3)^2,~(3)^3]$ \par
\hint{$[(1, 2)^2, 3] = [1, 2, 1, 2, 3]$}
\hint{This knot has 6 crossings. Use the knot table.}
\vfill
\problem{}
Show that the closure of the $n$-string braid $[(1, 2, ..., n-1)^m]$ is a knot iff $m$ and $n$ are coprime.
\vfill
\pagebreak

View File

@ -1,6 +1,7 @@
\usetikzlibrary{
knots,
hobby,
braids,
decorations.pathreplacing,
shapes.geometric,
calc
@ -50,5 +51,56 @@
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
}
}
},
braid/gap = 0.2,
braid/width = 5mm,
braid/height = -8mm,
braid/control factor = 0.75,
braid/nudge factor = 0.05,
braid/every strand/.style = {
line width = 0.7mm
},
bar/.style = {
% Should match braid line width
line width = 0.7mm,
fill = black
}
}
% Braid bar macro
% Argument: number of strands
\newcommand{\braidbars}[1]{
\draw[bar] ([xshift=-0.7mm]braid-1-s) rectangle (braid-#1-s);
\draw[bar] ([xshift=-0.7mm]braid-rev-1-e) rectangle (braid-rev-#1-e);
}
\newcommand{\widebraidbars}[1]{
\draw[bar] ([xshift=-0.7mm,yshift=-2mm]braid-1-s) rectangle ([yshift=2mm]braid-#1-s);
\draw[bar] ([xshift=-0.7mm,yshift=-2mm]braid-rev-1-e) rectangle ([yshift=2mm]braid-rev-#1-e);
}
% Closed braid loops
% Argument: number of strands
\newcommand{\closebraid}[1]{
\foreach \x in {1, ..., #1} {
\draw[braid/every strand, rounded corners = 4mm]
(braid-\x-s) --
([shift=(west:5*\x mm)]braid-\x-s) --
([shift=(west:5*\x mm),shift=(south:10*\x mm)]braid-\x-s) --
([shift=(east:5*\x mm),shift=(south:10*\x mm)]braid-rev-\x-e) --
([shift=(east:5*\x mm)]braid-rev-\x-e) --
(braid-rev-\x-e)
;
}
}
\newcommand{\labelbraidstart}[1]{
\foreach \x in {1, ..., #1} {
\node at ([xshift=-2mm]braid-\x-s) {$\x$};
}
}
\newcommand{\labelbraidend}[1]{
\foreach \x in {1, ..., #1} {
\node at ([xshift=2mm]braid-\x-e) {$\x$};
}
}