Added braids
This commit is contained in:
parent
3712e6becc
commit
3e16019521
BIN
Advanced/Knots/images/closed braid a.png
Normal file
BIN
Advanced/Knots/images/closed braid a.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 162 KiB |
BIN
Advanced/Knots/images/closed braid b.png
Normal file
BIN
Advanced/Knots/images/closed braid b.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 189 KiB |
@ -39,6 +39,7 @@
|
|||||||
\input{parts/1 composition.tex}
|
\input{parts/1 composition.tex}
|
||||||
\input{parts/2 links.tex}
|
\input{parts/2 links.tex}
|
||||||
\input{parts/3 sticks.tex}
|
\input{parts/3 sticks.tex}
|
||||||
|
\input{parts/4 braids.tex}
|
||||||
|
|
||||||
|
|
||||||
% Make sure the knot table is on an odd page
|
% Make sure the knot table is on an odd page
|
||||||
|
205
Advanced/Knots/parts/4 braids.tex
Normal file
205
Advanced/Knots/parts/4 braids.tex
Normal file
@ -0,0 +1,205 @@
|
|||||||
|
\section{Braids}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A \textit{braid} is a set of $n$ strings with fixed ends. Two braids are equivalent if they may be deformed into each other without disconnecting the strings. \par
|
||||||
|
Two braids are shown below.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[rotate=90, name prefix=braid] {
|
||||||
|
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||||
|
};
|
||||||
|
|
||||||
|
\braidbars{4}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\hfill
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[rotate=90, name prefix=braid] {
|
||||||
|
braid = {s_2^{-1} s_3 s_2 s_1 s_1^{-1} s_2^{-1} s_3^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||||
|
};
|
||||||
|
\braidbars{4}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Convince yourself that the braids above are equivalent.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A braid can be \textit{closed} by conecting its ends:
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[rotate=90, name prefix=braid] {
|
||||||
|
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||||
|
};
|
||||||
|
|
||||||
|
\closebraid{4}
|
||||||
|
\widebraidbars{4}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
When will a closed braid form a knot? \par
|
||||||
|
When will a closed braid form a link?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Draw a braid that creates a $3$-unlink when closed.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}<braidify>
|
||||||
|
Draw the following knots as closed braids.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.13\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/trefoil.png}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.15\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/closed braid a.png}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.15\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/closed braid b.png}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill~
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
We can describe the projection of a braid by listing which strings cross over and under each other as we move along the braid. \par
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
For example, consider a three-string braid. If the first string crosses over the second, we'll call that a $1$ crossing. If first string crosses \textbf{under} the second, we'll call that a $-1$ crossing.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.2\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[
|
||||||
|
name prefix = braid,
|
||||||
|
braid/number of strands = 3
|
||||||
|
] {
|
||||||
|
braid = {s_1}
|
||||||
|
};
|
||||||
|
\end{tikzpicture} \par
|
||||||
|
\texttt{1} crossing
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.2\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[
|
||||||
|
name prefix = braid,
|
||||||
|
braid/number of strands = 3
|
||||||
|
] {
|
||||||
|
braid = {s_1^{-1}}
|
||||||
|
};
|
||||||
|
\end{tikzpicture} \par
|
||||||
|
\texttt{-1} crossing
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.2\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[
|
||||||
|
name prefix = braid,
|
||||||
|
braid/number of strands = 3
|
||||||
|
] {
|
||||||
|
braid = {s_2}
|
||||||
|
};
|
||||||
|
\end{tikzpicture} \par
|
||||||
|
\texttt{2} crossing
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.2\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[
|
||||||
|
name prefix = braid,
|
||||||
|
braid/number of strands = 3
|
||||||
|
] {
|
||||||
|
braid = {s_2^{-2}}
|
||||||
|
};
|
||||||
|
\end{tikzpicture} \par
|
||||||
|
\texttt{-2} crossing
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill~
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Verify that the following is a $[1, 2, 1, -2, 1, 2]$ braid. \par
|
||||||
|
Read the braid right to left, with the \textbf{bottom} string numbered $1$.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[
|
||||||
|
rotate = 90,
|
||||||
|
name prefix = braid,
|
||||||
|
braid/number of strands = 3
|
||||||
|
] {
|
||||||
|
% When we rotate a braid
|
||||||
|
braid = {s_1 s_2 s_1 s_2^{-1} s_1 s_2}
|
||||||
|
};
|
||||||
|
\labelbraidstart{3}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Draw the five-string braid defined by $[1, 3, 4, -3, 2, 4]$
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pic[
|
||||||
|
rotate = 90,
|
||||||
|
name prefix = braid,
|
||||||
|
braid/number of strands = 5
|
||||||
|
] {
|
||||||
|
braid = {s_1 s_3 s_4 s_3^{-1} s_2 s_4}
|
||||||
|
};
|
||||||
|
|
||||||
|
\labelbraidstart{5}
|
||||||
|
\labelbraidend{5}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Identify the knot generated by the 4-string braid $[(-1, 2, 3)^2,~(3)^3]$ \par
|
||||||
|
\hint{$[(1, 2)^2, 3] = [1, 2, 1, 2, 3]$}
|
||||||
|
\hint{This knot has 6 crossings. Use the knot table.}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that the closure of the $n$-string braid $[(1, 2, ..., n-1)^m]$ is a knot iff $m$ and $n$ are coprime.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
@ -1,6 +1,7 @@
|
|||||||
\usetikzlibrary{
|
\usetikzlibrary{
|
||||||
knots,
|
knots,
|
||||||
hobby,
|
hobby,
|
||||||
|
braids,
|
||||||
decorations.pathreplacing,
|
decorations.pathreplacing,
|
||||||
shapes.geometric,
|
shapes.geometric,
|
||||||
calc
|
calc
|
||||||
@ -50,5 +51,56 @@
|
|||||||
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
|
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
},
|
||||||
|
braid/gap = 0.2,
|
||||||
|
braid/width = 5mm,
|
||||||
|
braid/height = -8mm,
|
||||||
|
braid/control factor = 0.75,
|
||||||
|
braid/nudge factor = 0.05,
|
||||||
|
braid/every strand/.style = {
|
||||||
|
line width = 0.7mm
|
||||||
|
},
|
||||||
|
bar/.style = {
|
||||||
|
% Should match braid line width
|
||||||
|
line width = 0.7mm,
|
||||||
|
fill = black
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
% Braid bar macro
|
||||||
|
% Argument: number of strands
|
||||||
|
\newcommand{\braidbars}[1]{
|
||||||
|
\draw[bar] ([xshift=-0.7mm]braid-1-s) rectangle (braid-#1-s);
|
||||||
|
\draw[bar] ([xshift=-0.7mm]braid-rev-1-e) rectangle (braid-rev-#1-e);
|
||||||
|
}
|
||||||
|
\newcommand{\widebraidbars}[1]{
|
||||||
|
\draw[bar] ([xshift=-0.7mm,yshift=-2mm]braid-1-s) rectangle ([yshift=2mm]braid-#1-s);
|
||||||
|
\draw[bar] ([xshift=-0.7mm,yshift=-2mm]braid-rev-1-e) rectangle ([yshift=2mm]braid-rev-#1-e);
|
||||||
|
}
|
||||||
|
|
||||||
|
% Closed braid loops
|
||||||
|
% Argument: number of strands
|
||||||
|
\newcommand{\closebraid}[1]{
|
||||||
|
\foreach \x in {1, ..., #1} {
|
||||||
|
\draw[braid/every strand, rounded corners = 4mm]
|
||||||
|
(braid-\x-s) --
|
||||||
|
([shift=(west:5*\x mm)]braid-\x-s) --
|
||||||
|
([shift=(west:5*\x mm),shift=(south:10*\x mm)]braid-\x-s) --
|
||||||
|
([shift=(east:5*\x mm),shift=(south:10*\x mm)]braid-rev-\x-e) --
|
||||||
|
([shift=(east:5*\x mm)]braid-rev-\x-e) --
|
||||||
|
(braid-rev-\x-e)
|
||||||
|
;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\labelbraidstart}[1]{
|
||||||
|
\foreach \x in {1, ..., #1} {
|
||||||
|
\node at ([xshift=-2mm]braid-\x-s) {$\x$};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\labelbraidend}[1]{
|
||||||
|
\foreach \x in {1, ..., #1} {
|
||||||
|
\node at ([xshift=2mm]braid-\x-e) {$\x$};
|
||||||
}
|
}
|
||||||
}
|
}
|
Loading…
x
Reference in New Issue
Block a user