Added braids
This commit is contained in:
205
Advanced/Knots/parts/4 braids.tex
Normal file
205
Advanced/Knots/parts/4 braids.tex
Normal file
@ -0,0 +1,205 @@
|
||||
\section{Braids}
|
||||
|
||||
\definition{}
|
||||
A \textit{braid} is a set of $n$ strings with fixed ends. Two braids are equivalent if they may be deformed into each other without disconnecting the strings. \par
|
||||
Two braids are shown below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[rotate=90, name prefix=braid] {
|
||||
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||
};
|
||||
|
||||
\braidbars{4}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}
|
||||
\pic[rotate=90, name prefix=braid] {
|
||||
braid = {s_2^{-1} s_3 s_2 s_1 s_1^{-1} s_2^{-1} s_3^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||
};
|
||||
\braidbars{4}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Convince yourself that the braids above are equivalent.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
A braid can be \textit{closed} by conecting its ends:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[rotate=90, name prefix=braid] {
|
||||
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||
};
|
||||
|
||||
\closebraid{4}
|
||||
\widebraidbars{4}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
When will a closed braid form a knot? \par
|
||||
When will a closed braid form a link?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw a braid that creates a $3$-unlink when closed.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}<braidify>
|
||||
Draw the following knots as closed braids.
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.13\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/trefoil.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.15\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/closed braid a.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.15\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/closed braid b.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
We can describe the projection of a braid by listing which strings cross over and under each other as we move along the braid. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, consider a three-string braid. If the first string crosses over the second, we'll call that a $1$ crossing. If first string crosses \textbf{under} the second, we'll call that a $-1$ crossing.
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_1}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{1} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_1^{-1}}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{-1} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_2}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{2} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_2^{-2}}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{-2} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Verify that the following is a $[1, 2, 1, -2, 1, 2]$ braid. \par
|
||||
Read the braid right to left, with the \textbf{bottom} string numbered $1$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
rotate = 90,
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
% When we rotate a braid
|
||||
braid = {s_1 s_2 s_1 s_2^{-1} s_1 s_2}
|
||||
};
|
||||
\labelbraidstart{3}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw the five-string braid defined by $[1, 3, 4, -3, 2, 4]$
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
rotate = 90,
|
||||
name prefix = braid,
|
||||
braid/number of strands = 5
|
||||
] {
|
||||
braid = {s_1 s_3 s_4 s_3^{-1} s_2 s_4}
|
||||
};
|
||||
|
||||
\labelbraidstart{5}
|
||||
\labelbraidend{5}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Identify the knot generated by the 4-string braid $[(-1, 2, 3)^2,~(3)^3]$ \par
|
||||
\hint{$[(1, 2)^2, 3] = [1, 2, 1, 2, 3]$}
|
||||
\hint{This knot has 6 crossings. Use the knot table.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the closure of the $n$-string braid $[(1, 2, ..., n-1)^m]$ is a knot iff $m$ and $n$ are coprime.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user