Typo
This commit is contained in:
parent
6d5459eaf4
commit
3ca94a0c1a
@ -198,13 +198,13 @@
|
||||
|
||||
|
||||
\problem{}
|
||||
Now, derive the \textit{multinomial coefficient} $\binom{n}{k_1,k_2,...,k_m}$. \par
|
||||
Now, derive the \textit{multinomial coefficient} $\binom{n}{k_1, k_2, ..., k_m}$. \par
|
||||
\vspace{1mm}
|
||||
The multinomial coefficient tells us how many distinct ways there to arrange $n$ objects
|
||||
of $m$ classes, where each class $i$ contains $k_i$ identical objects. \par
|
||||
\hint{
|
||||
In \ref{manyballs}, $n = 5$ and $(k_1, k_2, k_3, k_4) = (8, 3, 6, 4)$. \\
|
||||
So, the solution to \ref{manyballs} should be given by the multinomial coefficient $\binom{5}{8,3,6,4}$.
|
||||
In \ref{manyballs}, $n = 21$ and $(k_1, k_2, k_3, k_4) = (8, 3, 6, 4)$. \\
|
||||
So, the solution to \ref{manyballs} should be given by the multinomial coefficient $\binom{21}{8,3,6,4}$.
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user