From 3ca94a0c1a6df8bcd69ab5c8e3a10808c7908bea Mon Sep 17 00:00:00 2001 From: Mark Date: Mon, 25 Mar 2024 10:18:23 -0700 Subject: [PATCH] Typo --- Intermediate/Combinatorics/main.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Intermediate/Combinatorics/main.tex b/Intermediate/Combinatorics/main.tex index dbb868c..39b8751 100755 --- a/Intermediate/Combinatorics/main.tex +++ b/Intermediate/Combinatorics/main.tex @@ -198,13 +198,13 @@ \problem{} - Now, derive the \textit{multinomial coefficient} $\binom{n}{k_1,k_2,...,k_m}$. \par + Now, derive the \textit{multinomial coefficient} $\binom{n}{k_1, k_2, ..., k_m}$. \par \vspace{1mm} The multinomial coefficient tells us how many distinct ways there to arrange $n$ objects of $m$ classes, where each class $i$ contains $k_i$ identical objects. \par \hint{ - In \ref{manyballs}, $n = 5$ and $(k_1, k_2, k_3, k_4) = (8, 3, 6, 4)$. \\ - So, the solution to \ref{manyballs} should be given by the multinomial coefficient $\binom{5}{8,3,6,4}$. + In \ref{manyballs}, $n = 21$ and $(k_1, k_2, k_3, k_4) = (8, 3, 6, 4)$. \\ + So, the solution to \ref{manyballs} should be given by the multinomial coefficient $\binom{21}{8,3,6,4}$. }