Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts
This commit is contained in:
commit
36a70306d1
@ -94,10 +94,10 @@ Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
|
|||||||
The relation $a \diamond b$ holds if $| a - b | = 1$
|
The relation $a \diamond b$ holds if $| a - b | = 1$
|
||||||
|
|
||||||
\problempart{}
|
\problempart{}
|
||||||
Define $\{\}$ in $S$.
|
Define the empty set in $S$.
|
||||||
|
|
||||||
\problempart{}
|
\problempart{}
|
||||||
Define ${-1, 1}$ in $S$.
|
Define $\{-1, 1\}$ in $S$.
|
||||||
|
|
||||||
\problempart{}
|
\problempart{}
|
||||||
Define $\{-2, 2\}$ in $S$.
|
Define $\{-2, 2\}$ in $S$.
|
||||||
@ -116,7 +116,7 @@ Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{
|
|||||||
Show that $\Bumpeq$ is definable in $S$.
|
Show that $\Bumpeq$ is definable in $S$.
|
||||||
|
|
||||||
\problempart{}
|
\problempart{}
|
||||||
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{compliment} of the set $x$. \par
|
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of the set $x$. \par
|
||||||
Show that $f$ is definable in $S$.
|
Show that $f$ is definable in $S$.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
Loading…
x
Reference in New Issue
Block a user