Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts
This commit is contained in:
		| @ -94,10 +94,10 @@ Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par | ||||
| The relation $a \diamond b$ holds if $| a - b | = 1$ | ||||
|  | ||||
| \problempart{} | ||||
| Define $\{\}$ in $S$. | ||||
| Define the empty set in $S$. | ||||
|  | ||||
| \problempart{} | ||||
| Define ${-1, 1}$ in $S$. | ||||
| Define $\{-1, 1\}$ in $S$. | ||||
|  | ||||
| \problempart{} | ||||
| Define $\{-2, 2\}$ in $S$. | ||||
| @ -116,7 +116,7 @@ Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{ | ||||
| Show that $\Bumpeq$ is definable in $S$. | ||||
|  | ||||
| \problempart{} | ||||
| Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{compliment} of the set $x$. \par | ||||
| Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of the set $x$. \par | ||||
| Show that $f$ is definable in $S$. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
		Reference in New Issue
	
	Block a user