Section 3 solutions
This commit is contained in:
parent
198f0a308d
commit
3679eacc79
@ -10,7 +10,33 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \
|
||||
- use this graph to find the roots of $f$
|
||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||
|
||||
#graphgrid(none)
|
||||
#notsolution(graphgrid(none))
|
||||
|
||||
#solution([
|
||||
- Roots are 1, 2, and 3.
|
||||
- $accent(f, macron)(x) = x^3 #tp 1x^2 #tp 3x #tp 6 = (x #tp 1)(x #tp 2)(x #tp 3)$
|
||||
|
||||
|
||||
#graphgrid({
|
||||
import cetz.draw: *
|
||||
let step = 0.75
|
||||
|
||||
dotline((0, 0), (2.66 * step, 8 * step))
|
||||
dotline((0, 1 * step), (3.5 * step, 8 * step))
|
||||
dotline((0, 3 * step), (5 * step, 8 * step))
|
||||
dotline((0, 6 * step), (8 * step, 6 * step))
|
||||
|
||||
line(
|
||||
(0, 0),
|
||||
(1 * step, 3 * step),
|
||||
(2 * step, 5 * step),
|
||||
(3 * step, 6 * step),
|
||||
(7.5 * step, 6 * step),
|
||||
stroke: 1mm + oblue,
|
||||
)
|
||||
})
|
||||
])
|
||||
|
||||
|
||||
|
||||
#v(1fr)
|
||||
@ -22,7 +48,30 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \
|
||||
- use this graph to find the roots of $f$
|
||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||
|
||||
#graphgrid(none)
|
||||
#notsolution(graphgrid(none))
|
||||
|
||||
#solution([
|
||||
- Roots are 1, 2.5, and 2.5.
|
||||
- $accent(f, macron)(x) = x^3 #tp 1x^2 #tp 3.5x #tp 6 = (x #tp 1)(x #tp 2.5)^2$
|
||||
|
||||
#graphgrid({
|
||||
import cetz.draw: *
|
||||
let step = 0.75
|
||||
|
||||
dotline((0, 0), (2.66 * step, 8 * step))
|
||||
dotline((0, 1 * step), (3.5 * step, 8 * step))
|
||||
dotline((0, 6 * step), (2 * step, 8 * step))
|
||||
dotline((0, 6 * step), (8 * step, 6 * step))
|
||||
|
||||
line(
|
||||
(0, 0),
|
||||
(1 * step, 3 * step),
|
||||
(2.5 * step, 6 * step),
|
||||
(7.5 * step, 6 * step),
|
||||
stroke: 1mm + oblue,
|
||||
)
|
||||
})
|
||||
])
|
||||
|
||||
|
||||
#v(1fr)
|
||||
@ -33,7 +82,29 @@ Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \
|
||||
- use this graph to find the roots of $f$
|
||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||
|
||||
#graphgrid(none)
|
||||
#notsolution(graphgrid(none))
|
||||
|
||||
#solution([
|
||||
- Roots are 2, 2, and 2.
|
||||
- $accent(f, macron)(x) = x^3 #tp 2x^2 #tp 4x #tp 6 = (x #tp 2)^3$
|
||||
|
||||
#graphgrid({
|
||||
import cetz.draw: *
|
||||
let step = 0.75
|
||||
|
||||
dotline((0, 0), (2.66 * step, 8 * step))
|
||||
dotline((0, 6 * step), (1 * step, 8 * step))
|
||||
dotline((0, 6 * step), (2 * step, 8 * step))
|
||||
dotline((0, 6 * step), (8 * step, 6 * step))
|
||||
|
||||
line(
|
||||
(0, 0),
|
||||
(2 * step, 6 * step),
|
||||
(7.5 * step, 6 * step),
|
||||
stroke: 1mm + oblue,
|
||||
)
|
||||
})
|
||||
])
|
||||
|
||||
|
||||
#v(1fr)
|
||||
@ -44,6 +115,16 @@ Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \
|
||||
If $f(x) = a x^3 #tp b x^2 #tp c x #tp d$, then $accent(f, macron)(x) = a x^3 #tp B x^2 #tp C x #tp d$ for some $B$ and $C$. \
|
||||
Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b$, $c$, and $d$.
|
||||
|
||||
#solution([
|
||||
|
||||
$
|
||||
B = min(b, (a+c)/2, (2a+d)/2)
|
||||
$
|
||||
$
|
||||
C = min(c, (b+d)/2, (a+2d)/2)
|
||||
$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak() // MARK: page
|
||||
|
||||
@ -60,6 +141,13 @@ What are the roots of the following polynomial?
|
||||
),
|
||||
)
|
||||
|
||||
#solution([
|
||||
We have
|
||||
$
|
||||
accent(f, macron)(x) = 3x^6 #tp 2x^5 #tp 1x^4 #tp x^3 #tp 1x^2 #tp 3x #tp 5
|
||||
$
|
||||
which has roots $-1$, $-1$, $-1$, $1$, $2$, $2$
|
||||
])
|
||||
|
||||
|
||||
#v(1fr)
|
||||
@ -77,8 +165,34 @@ $
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$. \
|
||||
Then, find formulas for the roots $r_1, r_2, ..., r_n$.
|
||||
Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$.
|
||||
|
||||
#solution([
|
||||
$
|
||||
A_j
|
||||
&= min_(l<=j<k)( (a_l - a_k) / (k-l) (k-j) + a_k ) \
|
||||
&= min_(l<=j<k)( a_l (k-j) / (k-l) + a_k (j-l) / (k-l) )
|
||||
$
|
||||
|
||||
#v(2mm)
|
||||
|
||||
which is a weighted average of some $a_l$ and $a_k$, with $l<=j<k$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
With the same setup as the previous problem, \
|
||||
find formulas for the roots $r_1, r_2, ..., r_n$.
|
||||
|
||||
#solution([
|
||||
The roots are the differences between consecutive coefficients of $accent(f, macron)$:
|
||||
$
|
||||
r_i = A_i - A_(i-1)
|
||||
$
|
||||
where we set $A_n = a_n$ and $A_0 = a_0$.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
@ -86,4 +200,13 @@ Then, find formulas for the roots $r_1, r_2, ..., r_n$.
|
||||
Can you find a geometric interpretation of these formulas \
|
||||
in terms of the points $(-i, c_i)$ for $0 <= i <= n$?
|
||||
|
||||
#solution([
|
||||
The inequality #note([(for $l <= k < k$)])
|
||||
$
|
||||
A_j <= (a_l - a_k) / (k-l) (k-j)+a_k
|
||||
$
|
||||
states that the point $(-j,A_j)$ must lie on or below the line segment between the points $(-k, a_k)$ and $(-l, a_l)$.
|
||||
This makes it easy to find the $A_j$ using a graph of the points $(-i, a_i)$ for $0 <= i <=n$.
|
||||
])
|
||||
|
||||
#v(0.5fr)
|
||||
|
Loading…
x
Reference in New Issue
Block a user