From 3679eacc7977f626ccac468ff9f37ddf1f05a4ad Mon Sep 17 00:00:00 2001 From: Mark Date: Tue, 21 Jan 2025 09:30:57 -0800 Subject: [PATCH] Section 3 solutions --- .../Tropical Polynomials/parts/02 cubic.typ | 133 +++++++++++++++++- 1 file changed, 128 insertions(+), 5 deletions(-) diff --git a/Advanced/Tropical Polynomials/parts/02 cubic.typ b/Advanced/Tropical Polynomials/parts/02 cubic.typ index d561b3f..0ff3385 100644 --- a/Advanced/Tropical Polynomials/parts/02 cubic.typ +++ b/Advanced/Tropical Polynomials/parts/02 cubic.typ @@ -10,7 +10,33 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \ - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. -#graphgrid(none) +#notsolution(graphgrid(none)) + +#solution([ + - Roots are 1, 2, and 3. + - $accent(f, macron)(x) = x^3 #tp 1x^2 #tp 3x #tp 6 = (x #tp 1)(x #tp 2)(x #tp 3)$ + + + #graphgrid({ + import cetz.draw: * + let step = 0.75 + + dotline((0, 0), (2.66 * step, 8 * step)) + dotline((0, 1 * step), (3.5 * step, 8 * step)) + dotline((0, 3 * step), (5 * step, 8 * step)) + dotline((0, 6 * step), (8 * step, 6 * step)) + + line( + (0, 0), + (1 * step, 3 * step), + (2 * step, 5 * step), + (3 * step, 6 * step), + (7.5 * step, 6 * step), + stroke: 1mm + oblue, + ) + }) +]) + #v(1fr) @@ -22,7 +48,30 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \ - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. -#graphgrid(none) +#notsolution(graphgrid(none)) + +#solution([ + - Roots are 1, 2.5, and 2.5. + - $accent(f, macron)(x) = x^3 #tp 1x^2 #tp 3.5x #tp 6 = (x #tp 1)(x #tp 2.5)^2$ + + #graphgrid({ + import cetz.draw: * + let step = 0.75 + + dotline((0, 0), (2.66 * step, 8 * step)) + dotline((0, 1 * step), (3.5 * step, 8 * step)) + dotline((0, 6 * step), (2 * step, 8 * step)) + dotline((0, 6 * step), (8 * step, 6 * step)) + + line( + (0, 0), + (1 * step, 3 * step), + (2.5 * step, 6 * step), + (7.5 * step, 6 * step), + stroke: 1mm + oblue, + ) + }) +]) #v(1fr) @@ -33,7 +82,29 @@ Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \ - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. -#graphgrid(none) +#notsolution(graphgrid(none)) + +#solution([ + - Roots are 2, 2, and 2. + - $accent(f, macron)(x) = x^3 #tp 2x^2 #tp 4x #tp 6 = (x #tp 2)^3$ + + #graphgrid({ + import cetz.draw: * + let step = 0.75 + + dotline((0, 0), (2.66 * step, 8 * step)) + dotline((0, 6 * step), (1 * step, 8 * step)) + dotline((0, 6 * step), (2 * step, 8 * step)) + dotline((0, 6 * step), (8 * step, 6 * step)) + + line( + (0, 0), + (2 * step, 6 * step), + (7.5 * step, 6 * step), + stroke: 1mm + oblue, + ) + }) +]) #v(1fr) @@ -44,6 +115,16 @@ Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \ If $f(x) = a x^3 #tp b x^2 #tp c x #tp d$, then $accent(f, macron)(x) = a x^3 #tp B x^2 #tp C x #tp d$ for some $B$ and $C$. \ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b$, $c$, and $d$. +#solution([ + + $ + B = min(b, (a+c)/2, (2a+d)/2) + $ + $ + C = min(c, (b+d)/2, (a+2d)/2) + $ +]) + #v(1fr) #pagebreak() // MARK: page @@ -60,6 +141,13 @@ What are the roots of the following polynomial? ), ) +#solution([ + We have + $ + accent(f, macron)(x) = 3x^6 #tp 2x^5 #tp 1x^4 #tp x^3 #tp 1x^2 #tp 3x #tp 5 + $ + which has roots $-1$, $-1$, $-1$, $1$, $2$, $2$ +]) #v(1fr) @@ -77,8 +165,34 @@ $ #v(2mm) -Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$. \ -Then, find formulas for the roots $r_1, r_2, ..., r_n$. +Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$. + +#solution([ + $ + A_j + &= min_(l<=j