Cryptography edits
This commit is contained in:
parent
bc43a4ecce
commit
366f79f3d4
@ -2,7 +2,8 @@
|
|||||||
% use [solutions] flag to show solutions.
|
% use [solutions] flag to show solutions.
|
||||||
\documentclass[
|
\documentclass[
|
||||||
solutions,
|
solutions,
|
||||||
singlenumbering
|
singlenumbering,
|
||||||
|
shortwarning
|
||||||
]{../../resources/ormc_handout}
|
]{../../resources/ormc_handout}
|
||||||
|
|
||||||
\usepackage{multicol}
|
\usepackage{multicol}
|
||||||
|
@ -13,10 +13,20 @@ Find $\gcd(20, 14)$ by hand.
|
|||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\theorem{The Division Algorithm}
|
\theorem{The Division Algorithm}<divalgo>
|
||||||
Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par
|
Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par
|
||||||
In other words, we can divide $a$ by $b$ to get $q$ remainder $r$.
|
In other words, we can divide $a$ by $b$ to get $q$ remainder $r$.
|
||||||
|
|
||||||
|
\begin{instructornote}
|
||||||
|
\ref{divalgo} looks scary on paper, but it's quite simple. \par
|
||||||
|
Doing a small example on the board (like $14 \div 3$) may be a good idea. \par
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
For those that are new to modular arithmetic, you may want to explain how remainders,
|
||||||
|
clock-face counting, division algorithm, and modular arithmetic are all the same.
|
||||||
|
\end{instructornote}
|
||||||
|
|
||||||
\theorem{}<gcd_abc>
|
\theorem{}<gcd_abc>
|
||||||
For any integers $a, b, c$, \par
|
For any integers $a, b, c$, \par
|
||||||
$\gcd(ac + b, a) = \gcd(a, b)$
|
$\gcd(ac + b, a) = \gcd(a, b)$
|
||||||
@ -64,7 +74,12 @@ Using the output of the Euclidean algorithm,
|
|||||||
% gcd = 1
|
% gcd = 1
|
||||||
% u = 11; v = -175
|
% u = 11; v = -175
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
This is called the \textit{extended Euclidean algorithm}.
|
This is called the \textit{extended Euclidean algorithm}. \par
|
||||||
|
\hint{
|
||||||
|
You don't need to fully solve the last part of this question. \\
|
||||||
|
Understand how you \textit{would} do it, then move on.
|
||||||
|
Don't spend too much time on arithmetic.
|
||||||
|
}
|
||||||
|
|
||||||
%For which numbers $c$ can we find a $(u, v)$ so that $541u + 34v = c$? \\
|
%For which numbers $c$ can we find a $(u, v)$ so that $541u + 34v = c$? \\
|
||||||
%For every such $c$, what are $u$ and $v$?
|
%For every such $c$, what are $u$ and $v$?
|
||||||
|
@ -4,11 +4,11 @@
|
|||||||
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par
|
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Create a multiplication addition table for $\mathbb{Z}_4$:
|
Create a multiplication table for $\mathbb{Z}_4$:
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tabular}{c | c c c c}
|
\begin{tabular}{c | c c c c}
|
||||||
+ & 0 & 1 & 2 & 3 \\
|
\times & 0 & 1 & 2 & 3 \\
|
||||||
\hline
|
\hline
|
||||||
0 & ? & ? & ? & ? \\
|
0 & ? & ? & ? & ? \\
|
||||||
1 & ? & ? & ? & ? \\
|
1 & ? & ? & ? & ? \\
|
||||||
@ -36,8 +36,7 @@ $a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par
|
|||||||
\problem{}
|
\problem{}
|
||||||
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
|
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
|
||||||
Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par
|
Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par
|
||||||
Find the inverse of $2$ in $\mathbb{Z}_5$, if one exists.
|
Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists.
|
||||||
%$34^\star \equiv -175 \equiv 366 \pmod{541}$.
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user