diff --git a/Advanced/Cryptography/main.tex b/Advanced/Cryptography/main.tex index b62969e..e8b9279 100755 --- a/Advanced/Cryptography/main.tex +++ b/Advanced/Cryptography/main.tex @@ -2,7 +2,8 @@ % use [solutions] flag to show solutions. \documentclass[ solutions, - singlenumbering + singlenumbering, + shortwarning ]{../../resources/ormc_handout} \usepackage{multicol} diff --git a/Advanced/Cryptography/parts/0 euclidean.tex b/Advanced/Cryptography/parts/0 euclidean.tex index 0779c7d..9bd167e 100755 --- a/Advanced/Cryptography/parts/0 euclidean.tex +++ b/Advanced/Cryptography/parts/0 euclidean.tex @@ -13,10 +13,20 @@ Find $\gcd(20, 14)$ by hand. \vfill -\theorem{The Division Algorithm} +\theorem{The Division Algorithm} Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par In other words, we can divide $a$ by $b$ to get $q$ remainder $r$. +\begin{instructornote} + \ref{divalgo} looks scary on paper, but it's quite simple. \par + Doing a small example on the board (like $14 \div 3$) may be a good idea. \par + + \vspace{2mm} + + For those that are new to modular arithmetic, you may want to explain how remainders, + clock-face counting, division algorithm, and modular arithmetic are all the same. +\end{instructornote} + \theorem{} For any integers $a, b, c$, \par $\gcd(ac + b, a) = \gcd(a, b)$ @@ -64,7 +74,12 @@ Using the output of the Euclidean algorithm, % gcd = 1 % u = 11; v = -175 \end{itemize} -This is called the \textit{extended Euclidean algorithm}. +This is called the \textit{extended Euclidean algorithm}. \par +\hint{ + You don't need to fully solve the last part of this question. \\ + Understand how you \textit{would} do it, then move on. + Don't spend too much time on arithmetic. +} %For which numbers $c$ can we find a $(u, v)$ so that $541u + 34v = c$? \\ %For every such $c$, what are $u$ and $v$? diff --git a/Advanced/Cryptography/parts/1 mod.tex b/Advanced/Cryptography/parts/1 mod.tex index 36daf31..5fa7786 100755 --- a/Advanced/Cryptography/parts/1 mod.tex +++ b/Advanced/Cryptography/parts/1 mod.tex @@ -4,11 +4,11 @@ $\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par \problem{} -Create a multiplication addition table for $\mathbb{Z}_4$: +Create a multiplication table for $\mathbb{Z}_4$: \begin{center} \begin{tabular}{c | c c c c} - + & 0 & 1 & 2 & 3 \\ + \times & 0 & 1 & 2 & 3 \\ \hline 0 & ? & ? & ? & ? \\ 1 & ? & ? & ? & ? \\ @@ -36,8 +36,7 @@ $a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par \problem{} Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par -Find the inverse of $2$ in $\mathbb{Z}_5$, if one exists. -%$34^\star \equiv -175 \equiv 366 \pmod{541}$. +Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists. \vfill