Cryptography edits
This commit is contained in:
@ -4,11 +4,11 @@
|
||||
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par
|
||||
|
||||
\problem{}
|
||||
Create a multiplication addition table for $\mathbb{Z}_4$:
|
||||
Create a multiplication table for $\mathbb{Z}_4$:
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\times & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & ? & ? & ? & ? \\
|
||||
1 & ? & ? & ? & ? \\
|
||||
@ -36,8 +36,7 @@ $a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par
|
||||
\problem{}
|
||||
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
|
||||
Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par
|
||||
Find the inverse of $2$ in $\mathbb{Z}_5$, if one exists.
|
||||
%$34^\star \equiv -175 \equiv 366 \pmod{541}$.
|
||||
Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists.
|
||||
\vfill
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user