TMP
@ -1,5 +1,11 @@
 | 
			
		||||
#import "@local/handout:0.1.0": *
 | 
			
		||||
 | 
			
		||||
// Resources:
 | 
			
		||||
//
 | 
			
		||||
// https://eschermath.org/wiki/Wallpaper_Patterns.html
 | 
			
		||||
// https://mathworld.wolfram.com/WallpaperGroups.html
 | 
			
		||||
// https://en.wikipedia.org/wiki/Wallpaper_group
 | 
			
		||||
 | 
			
		||||
#show: handout.with(
 | 
			
		||||
  title: [Wallpaper Symmetry],
 | 
			
		||||
  by: "Mark",
 | 
			
		||||
@ -10,3 +16,6 @@
 | 
			
		||||
 | 
			
		||||
#include "parts/01 reflect.typ"
 | 
			
		||||
#pagebreak()
 | 
			
		||||
 | 
			
		||||
#include "parts/02 rotate.typ"
 | 
			
		||||
#pagebreak()
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										115
									
								
								src/Advanced/Wallpaper/parts/02 rotate.typ
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,115 @@
 | 
			
		||||
#import "@local/handout:0.1.0": *
 | 
			
		||||
#import "@preview/cetz:0.3.1"
 | 
			
		||||
 | 
			
		||||
= Rotational Symmetry
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Another symmetry is n-fold rotational symmetry about a point, whose signature is written n. Multiple bold numbers means multiple points of rotational symmetry.
 | 
			
		||||
 | 
			
		||||
Two points of rotational symmetry are considered the same if we can perform a translation + rotation sending one to the other, while leaving the pattern the same.
 | 
			
		||||
 | 
			
		||||
There are also patterns with both kinds of symmetries. To classify such patterns, first find all the mirror symmetries, then all the rotational symmetries that are not accounted
 | 
			
		||||
for by the mirror symmetries.
 | 
			
		||||
 | 
			
		||||
By convention we write the rotational symmetries before
 | 
			
		||||
the `*`.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#table(
 | 
			
		||||
  stroke: none,
 | 
			
		||||
  align: center,
 | 
			
		||||
  columns: (1fr, 1fr),
 | 
			
		||||
  rows: 50mm,
 | 
			
		||||
  image("../res/333.png", height: 100%), image("../res/3*3.png", height: 100%),
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#problem()
 | 
			
		||||
Mark the three rotation points in Figure 1.
 | 
			
		||||
 | 
			
		||||
#problem()
 | 
			
		||||
Find the signature of the pattern in Figure 2.
 | 
			
		||||
 | 
			
		||||
#solution([`3 *3`])
 | 
			
		||||
 | 
			
		||||
#pagebreak()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Some exceptional cases: It is possible to have two different parallel mirror lines. In
 | 
			
		||||
this situation the signature is ∗ ∗
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#table(
 | 
			
		||||
  stroke: none,
 | 
			
		||||
  align: center,
 | 
			
		||||
  columns: 1fr,
 | 
			
		||||
  rows: 60mm,
 | 
			
		||||
  image("../res/**.png", height: 100%),
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
#problem()
 | 
			
		||||
Draw another wallpaper pattern with signature `**`
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#pagebreak()
 | 
			
		||||
 | 
			
		||||
There are two other types of symmetries. The first called a miracle whose signature is
 | 
			
		||||
written ×. It is the result of a glide reflection, which is translation along a line followed
 | 
			
		||||
by reflection about that line.
 | 
			
		||||
This occurs when there is orientation-reversing symmetry not accounted for by a mirror.
 | 
			
		||||
For example, if we modify Figure 3 slightly we get a signature of ∗×
 | 
			
		||||
 | 
			
		||||
#table(
 | 
			
		||||
  stroke: none,
 | 
			
		||||
  align: center,
 | 
			
		||||
  columns: (1fr, 1fr),
 | 
			
		||||
  rows: 60mm,
 | 
			
		||||
  image("../res/*x-b.png", height: 100%),
 | 
			
		||||
  image("../res/*x-a.png", height: 100%),
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
Signature ∗×. There is a glide reflection (shown by the by the dotted line)
 | 
			
		||||
taking the clockwise spiral to the counter-clockwise spiral, reversing orientation
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#pagebreak()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#problem()
 | 
			
		||||
Find the signatures of the following patterns:
 | 
			
		||||
 | 
			
		||||
#table(
 | 
			
		||||
  stroke: none,
 | 
			
		||||
  align: center,
 | 
			
		||||
  columns: (1fr, 1fr),
 | 
			
		||||
  rows: 60mm,
 | 
			
		||||
  image("../res/wiki/Wallpaper_group-cm-4.jpg", height: 100%),
 | 
			
		||||
  image("../res/wiki/Wallpaper_group-p4g-2.jpg", height: 100%),
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#pagebreak()
 | 
			
		||||
 | 
			
		||||
There is another exceptional case with two miracles, where there are two glide reflection
 | 
			
		||||
symmetries along distinct lines. There are other glide reflections, but they can be obtained
 | 
			
		||||
by composing the two marked in the diagram.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#table(
 | 
			
		||||
  stroke: none,
 | 
			
		||||
  align: center,
 | 
			
		||||
  columns: (1fr, 1fr),
 | 
			
		||||
  rows: 60mm,
 | 
			
		||||
  image("../res/xx-b.png", height: 100%),
 | 
			
		||||
  image("../res/xx-a.png", height: 100%),
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
Figure 7: There are two distinct mirrorless crossings, so the signature is `xx`.
 | 
			
		||||
Lastly, if none of the above symmetries appear in the pattern, then there is only regular
 | 
			
		||||
translational symmetry, which we denote by O.
 | 
			
		||||
 | 
			
		||||
In summary, to find the signature of a pattern:
 | 
			
		||||
- Find the mirror lines (∗) and the distinct intersections
 | 
			
		||||
- Find the rotational points of symmetry not account for by reflections.
 | 
			
		||||
- Look for any miracles (×) i.e. glide reflections that do not cross a mirror line.
 | 
			
		||||
- If you found none of the above, it is just O
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/**.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 535 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/*x-a.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 666 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/*x-b.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 160 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/3*3.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 533 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/333.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 568 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/wiki/Wallpaper_group-cm-4.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 800 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/wiki/Wallpaper_group-p4g-2.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 436 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/xx-a.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 81 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								src/Advanced/Wallpaper/res/xx-b.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 406 KiB  |