Minor edits
This commit is contained in:
		@ -60,6 +60,9 @@ As a function, $\mathcal{H}$ maps values in $\Omega$ to values in $\mathbb{Z}^+_
 | 
			
		||||
	\item ...and so on.
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
Intuitively, a random variable assigns a \say{value} in $\mathbb{R}$ to every possible outcome.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
We can compute the probability that a random variable takes a certain value by computing the probability of
 | 
			
		||||
the set of outcomes that produce that value. \par
 | 
			
		||||
@ -92,18 +95,18 @@ Find $\mathcal{P}(\mathcal{X} = x)$ for all $x$ in $\mathbb{Z}$.
 | 
			
		||||
%
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
\definition{}<defexp>
 | 
			
		||||
Say we have a random variable $\mathcal{X}$ that produces outputs in $\mathbb{R}$. \par
 | 
			
		||||
The \textit{expected value} of $\mathcal{X}$ is then defined as
 | 
			
		||||
\begin{equation*}
 | 
			
		||||
	\mathcal{E}(\mathcal{X})
 | 
			
		||||
	~\coloneqq~ \sum_{x \in A}\Bigl(x \times \mathcal{P}\bigl(\mathcal{X} = x\bigr)\Bigr)
 | 
			
		||||
	~\coloneqq~ \sum_{x \in \mathbb{R}}\Bigl(x \times \mathcal{P}\bigl(\mathcal{X} = x\bigr)\Bigr)
 | 
			
		||||
	~=~ \sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr)
 | 
			
		||||
\end{equation*}
 | 
			
		||||
That is, $\mathcal{E}(\mathcal{X})$ is the average of all possible outputs of $\mathcal{X}$ weighted by their probability.
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ three times. \par
 | 
			
		||||
Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ two times. \par
 | 
			
		||||
Define $\mathcal{H}$ as the number of heads we see. \par
 | 
			
		||||
Find $\mathcal{E}(\mathcal{H})$.
 | 
			
		||||
 | 
			
		||||
@ -113,6 +116,14 @@ Find $\mathcal{E}(\mathcal{H})$.
 | 
			
		||||
Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables. \par
 | 
			
		||||
Show that $\mathcal{E}(\mathcal{A} + \mathcal{B}) = \mathcal{E}(\mathcal{A}) + \mathcal{E}(\mathcal{B})$.
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	Use the second definition of $\mathcal{E}$, $\sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr)$.
 | 
			
		||||
 | 
			
		||||
	\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
	Make sure students understand all parts of \ref{defexp}, and are comfortable with the fact that a random variable \say{assigns values} to outcomes.
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										35
									
								
								resources/share/main.tex
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										35
									
								
								resources/share/main.tex
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,35 @@
 | 
			
		||||
% use [nosolutions] flag to hide solutions.
 | 
			
		||||
% use [solutions] flag to show solutions.
 | 
			
		||||
\documentclass[
 | 
			
		||||
	solutions,
 | 
			
		||||
	singlenumbering
 | 
			
		||||
]{./ormc_handout}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\title{The Size of Sets}
 | 
			
		||||
\subtitle{Prepared by Mark on \today{}}
 | 
			
		||||
 | 
			
		||||
\begin{document}
 | 
			
		||||
 | 
			
		||||
	\maketitle
 | 
			
		||||
 | 
			
		||||
	\section{Set Basics}
 | 
			
		||||
 | 
			
		||||
	\definition{}
 | 
			
		||||
	A \textit{set} is a collection of objects. \par
 | 
			
		||||
	If $a$ is an element of set $S$, we write $a \in S$. This is pronounced \say{$a$ in $S$.} \par
 | 
			
		||||
	The position of each element in a set or the number of times it is repeated doesn't matter. \par
 | 
			
		||||
	All that matters is \textit{which} elements are in the set.
 | 
			
		||||
 | 
			
		||||
	\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
	We say two sets $A$ and $B$ are equal if every element of $A$ is in $B$, and every element of $B$ is in $A$. This is known as the \textit{principle of extensionality.}
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	Convince yourself that $\{a, b\} = \{b, a\} = \{a, b, a, b, b\}$.
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		This is a solution.
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
\end{document}
 | 
			
		||||
		Reference in New Issue
	
	Block a user