diff --git a/Advanced/Stopping Problems/parts/0 probability.tex b/Advanced/Stopping Problems/parts/0 probability.tex index 3e52975..e75b9da 100644 --- a/Advanced/Stopping Problems/parts/0 probability.tex +++ b/Advanced/Stopping Problems/parts/0 probability.tex @@ -60,6 +60,9 @@ As a function, $\mathcal{H}$ maps values in $\Omega$ to values in $\mathbb{Z}^+_ \item ...and so on. \end{itemize} +Intuitively, a random variable assigns a \say{value} in $\mathbb{R}$ to every possible outcome. + + \definition{} We can compute the probability that a random variable takes a certain value by computing the probability of the set of outcomes that produce that value. \par @@ -92,18 +95,18 @@ Find $\mathcal{P}(\mathcal{X} = x)$ for all $x$ in $\mathbb{Z}$. % -\definition{} +\definition{} Say we have a random variable $\mathcal{X}$ that produces outputs in $\mathbb{R}$. \par The \textit{expected value} of $\mathcal{X}$ is then defined as \begin{equation*} \mathcal{E}(\mathcal{X}) - ~\coloneqq~ \sum_{x \in A}\Bigl(x \times \mathcal{P}\bigl(\mathcal{X} = x\bigr)\Bigr) + ~\coloneqq~ \sum_{x \in \mathbb{R}}\Bigl(x \times \mathcal{P}\bigl(\mathcal{X} = x\bigr)\Bigr) ~=~ \sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr) \end{equation*} That is, $\mathcal{E}(\mathcal{X})$ is the average of all possible outputs of $\mathcal{X}$ weighted by their probability. \problem{} -Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ three times. \par +Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ two times. \par Define $\mathcal{H}$ as the number of heads we see. \par Find $\mathcal{E}(\mathcal{H})$. @@ -113,6 +116,14 @@ Find $\mathcal{E}(\mathcal{H})$. Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables. \par Show that $\mathcal{E}(\mathcal{A} + \mathcal{B}) = \mathcal{E}(\mathcal{A}) + \mathcal{E}(\mathcal{B})$. +\begin{solution} + Use the second definition of $\mathcal{E}$, $\sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr)$. + + \vspace{2mm} + + Make sure students understand all parts of \ref{defexp}, and are comfortable with the fact that a random variable \say{assigns values} to outcomes. +\end{solution} + \vfill \definition{} diff --git a/resources/share/main.tex b/resources/share/main.tex new file mode 100755 index 0000000..b091bd5 --- /dev/null +++ b/resources/share/main.tex @@ -0,0 +1,35 @@ +% use [nosolutions] flag to hide solutions. +% use [solutions] flag to show solutions. +\documentclass[ + solutions, + singlenumbering +]{./ormc_handout} + + +\title{The Size of Sets} +\subtitle{Prepared by Mark on \today{}} + +\begin{document} + + \maketitle + + \section{Set Basics} + + \definition{} + A \textit{set} is a collection of objects. \par + If $a$ is an element of set $S$, we write $a \in S$. This is pronounced \say{$a$ in $S$.} \par + The position of each element in a set or the number of times it is repeated doesn't matter. \par + All that matters is \textit{which} elements are in the set. + + \vspace{2mm} + + We say two sets $A$ and $B$ are equal if every element of $A$ is in $B$, and every element of $B$ is in $A$. This is known as the \textit{principle of extensionality.} + + \problem{} + Convince yourself that $\{a, b\} = \{b, a\} = \{a, b, a, b, b\}$. + + \begin{solution} + This is a solution. + \end{solution} + +\end{document} \ No newline at end of file