Crypto edits
This commit is contained in:
parent
8b10780fbe
commit
1609ec919a
@ -21,15 +21,6 @@ In other words, we can divide $a$ by $b$ to get $q$ remainder $r$.
|
||||
For any integers $a, b, c$, \par
|
||||
$\gcd(ac + b, a) = \gcd(a, b)$
|
||||
|
||||
\problem{}
|
||||
Compute the gcd of 12 and 976.
|
||||
\begin{solution}
|
||||
$976 = 3 \times 324 + 4 = 3 \times 4 \times 81 + 4$
|
||||
So, $\gcd(a, b) = 4$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{The Euclidean Algorithm}<euclid>
|
||||
Using the two theorems above, detail an algorithm for finding $\gcd(a, b)$. \par
|
||||
Then, compute $\gcd(1610, 207)$ by hand. \par
|
||||
@ -109,7 +100,6 @@ We now want to write the 2 in the last equation in terms of 20 and 14.
|
||||
|
||||
|
||||
\begin{solution}
|
||||
|
||||
Using the output of the Euclidean Algorithm, we can use substitution and a bit of algebra to solve such problems. Consider the following example:
|
||||
|
||||
\begin{multicols}{2}
|
||||
@ -139,6 +129,10 @@ We now want to write the 2 in the last equation in terms of 20 and 14.
|
||||
$\gcd(541, 34) = 541(11) + 34(-175)$
|
||||
\end{solution}
|
||||
|
||||
\begin{solution}
|
||||
\huge
|
||||
This problem is too hard. Break it into many.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
@ -28,7 +28,7 @@ Create a multiplication table for $\mathbb{Z}_4$:
|
||||
|
||||
|
||||
\definition{}
|
||||
Let $a, b \in \mathbb{Z}_n$. \par
|
||||
Let $a, b$ be elements of %\mathbb{Z}_n$. \par
|
||||
If $a \times b = 1$, we say that $b$ is the \textit{inverse} of $a$ in $\mathbb{Z}_n$.
|
||||
|
||||
\vspace{2mm}
|
||||
@ -37,7 +37,7 @@ We usually write \say{$a$ inverse} as $a^{-1}$. \par
|
||||
Inverses are \textbf{not} guaranteed to exist.
|
||||
|
||||
\theorem{}<mod_has_inverse>
|
||||
$a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par
|
||||
$a$ has an inverse in $\mathbb{Z}_n$ if and only if $\gcd(a, n) = 1$ \par
|
||||
|
||||
\problem{}
|
||||
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
|
||||
@ -56,14 +56,13 @@ Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists.
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse.
|
||||
|
||||
Show that if $n$ is prime, every element of $\mathbb{Z}_n$ (except 0) has an inverse.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is this true if $n$ is prime?
|
||||
|
||||
Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse.
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
||||
|
||||
\problem{}<general_inverse>
|
||||
|
@ -106,8 +106,8 @@ Run this algorithm and make sure it works.
|
||||
|
||||
|
||||
\problem{}
|
||||
Is this secure? What information does Eve have? \par
|
||||
What does Eve need to find $m$?
|
||||
What information does Eve have? \par
|
||||
What does Eve need to do to find $m$?
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
|
Loading…
x
Reference in New Issue
Block a user