Crypto edits
This commit is contained in:
		| @ -21,15 +21,6 @@ In other words, we can divide $a$ by $b$ to get $q$ remainder $r$. | ||||
| For any integers $a, b, c$, \par | ||||
| $\gcd(ac + b, a) = \gcd(a, b)$ | ||||
|  | ||||
| \problem{} | ||||
| Compute the gcd of 12 and 976. | ||||
| \begin{solution} | ||||
| 	$976 = 3 \times 324 + 4 = 3 \times 4 \times 81 + 4$ | ||||
| 	So, $\gcd(a, b) = 4$ | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{The Euclidean Algorithm}<euclid> | ||||
| Using the two theorems above, detail an algorithm for finding $\gcd(a, b)$. \par | ||||
| Then, compute $\gcd(1610, 207)$ by hand. \par | ||||
| @ -109,7 +100,6 @@ We now want to write the 2 in the last equation in terms of 20 and 14. | ||||
|  | ||||
|  | ||||
| \begin{solution} | ||||
|  | ||||
| 	Using the output of the Euclidean Algorithm, we can use substitution and a bit of algebra to solve such problems. Consider the following example: | ||||
|  | ||||
| 	\begin{multicols}{2} | ||||
| @ -139,6 +129,10 @@ We now want to write the 2 in the last equation in terms of 20 and 14. | ||||
| 	$\gcd(541, 34) = 541(11) + 34(-175)$ | ||||
| \end{solution} | ||||
|  | ||||
| \begin{solution} | ||||
| 	\huge | ||||
| 	This problem is too hard. Break it into many. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| @ -28,7 +28,7 @@ Create a multiplication table for $\mathbb{Z}_4$: | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| Let $a, b \in \mathbb{Z}_n$. \par | ||||
| Let $a, b$ be elements of %\mathbb{Z}_n$. \par | ||||
| If $a \times b = 1$, we say that $b$ is the \textit{inverse} of $a$ in $\mathbb{Z}_n$. | ||||
|  | ||||
| \vspace{2mm} | ||||
| @ -37,7 +37,7 @@ We usually write \say{$a$ inverse} as $a^{-1}$. \par | ||||
| Inverses are \textbf{not} guaranteed to exist. | ||||
|  | ||||
| \theorem{}<mod_has_inverse> | ||||
| $a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par | ||||
| $a$ has an inverse in $\mathbb{Z}_n$ if and only if $\gcd(a, n) = 1$ \par | ||||
|  | ||||
| \problem{} | ||||
| Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par | ||||
| @ -56,14 +56,13 @@ Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse. | ||||
|  | ||||
| Show that if $n$ is prime, every element of $\mathbb{Z}_n$ (except 0) has an inverse. | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Is this true if $n$ is prime? | ||||
|  | ||||
| Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse. | ||||
| \vfill | ||||
|  | ||||
| \pagebreak | ||||
|  | ||||
| \problem{}<general_inverse> | ||||
|  | ||||
| @ -106,8 +106,8 @@ Run this algorithm and make sure it works. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Is this secure? What information does Eve have? \par | ||||
| What does Eve need to find $m$? | ||||
| What information does Eve have? \par | ||||
| What does Eve need to do to find $m$? | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
|  | ||||
		Reference in New Issue
	
	Block a user