Crypto edits
This commit is contained in:
@ -28,7 +28,7 @@ Create a multiplication table for $\mathbb{Z}_4$:
|
||||
|
||||
|
||||
\definition{}
|
||||
Let $a, b \in \mathbb{Z}_n$. \par
|
||||
Let $a, b$ be elements of %\mathbb{Z}_n$. \par
|
||||
If $a \times b = 1$, we say that $b$ is the \textit{inverse} of $a$ in $\mathbb{Z}_n$.
|
||||
|
||||
\vspace{2mm}
|
||||
@ -37,7 +37,7 @@ We usually write \say{$a$ inverse} as $a^{-1}$. \par
|
||||
Inverses are \textbf{not} guaranteed to exist.
|
||||
|
||||
\theorem{}<mod_has_inverse>
|
||||
$a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par
|
||||
$a$ has an inverse in $\mathbb{Z}_n$ if and only if $\gcd(a, n) = 1$ \par
|
||||
|
||||
\problem{}
|
||||
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
|
||||
@ -56,14 +56,13 @@ Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists.
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse.
|
||||
|
||||
Show that if $n$ is prime, every element of $\mathbb{Z}_n$ (except 0) has an inverse.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is this true if $n$ is prime?
|
||||
|
||||
Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse.
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
||||
|
||||
\problem{}<general_inverse>
|
||||
|
Reference in New Issue
Block a user