Wallpaper groups (#23)
All checks were successful
CI / Typst formatting (push) Successful in 5s
CI / Typos (push) Successful in 11s
CI / Build (push) Successful in 5m39s

Reviewed-on: #23
This commit is contained in:
Mark 2025-05-08 18:40:59 -07:00 committed by Mark
parent 99344f9aed
commit 121780df6c
38 changed files with 150593 additions and 0 deletions

View File

@ -0,0 +1,26 @@
#import "@local/handout:0.1.0": *
// Resources:
//
// https://eschermath.org/wiki/Wallpaper_Patterns.html
// https://mathworld.wolfram.com/WallpaperGroups.html
// https://en.wikipedia.org/wiki/Wallpaper_group
#show: handout.with(
title: [Wallpaper Symmetry],
by: "Mark",
)
#include "parts/00 intro.typ"
#pagebreak()
#include "parts/01 reflect.typ"
#pagebreak()
#include "parts/02 rotate.typ"
#pagebreak()
#include "parts/03 problems.typ"
#pagebreak()
#include "parts/04 theorem.typ"

View File

@ -0,0 +1,7 @@
[metadata]
title = "Wallpaper Symmetries"
[publish]
handout = true
solutions = true

View File

@ -0,0 +1,151 @@
#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
= Wallpaper Symmetries
#definition()
A _Euclidean isometry_ is a transformation of the plane that preserves distances. \
Intuitively, an isometry moves objects on the plane without deforming them.
There are four classes of Euclidean isometries:
- translations
- reflections
- rotations
- glide reflections
#note([We can prove there are no others, but this is beyond the scope of this handout.]) \
A simple example of each isometry is shown below:
#let demo(c) = {
let s = 0.5
cetz.draw.line(
(0, 0),
(3 * s, 0),
(3 * s, 1 * s),
(1 * s, 1 * s),
(1 * s, 2 * s),
(0, 2 * s),
close: true,
fill: c,
stroke: black + 0mm * s,
)
}
#table(
stroke: none,
align: center,
columns: (1fr, 1fr),
rows: (3.5cm, 3.5cm),
row-gutter: 2mm,
[
#cetz.canvas({
import cetz.draw: *
demo(ored)
translate(x: -1.0, y: -1.0)
demo(oblue)
})
#v(1fr)
Translation
],
[
#cetz.canvas({
import cetz.draw: *
circle((-2, 0), radius: 0.1, stroke: none, fill: black)
arc(
(-2, 0),
radius: 1,
anchor: "origin",
start: 0deg,
stop: -30deg,
mode: "PIE",
)
demo(ored)
rotate(z: -30deg, origin: (-2, 0))
demo(oblue)
})
#v(1fr)
Rotation
],
[
#cetz.canvas({
import cetz.draw: *
line((-2, 0), (4, 0))
translate(x: 0, y: 0.25)
demo(ored)
set-transform(none)
set-transform((
(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1),
))
translate(x: 0, y: 0.25)
demo(oblue)
})
#v(1fr)
Reflection
],
[
#cetz.canvas({
import cetz.draw: *
demo(ored)
set-transform((
(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, 0, 0),
(0, 0, 0, 0),
))
translate(x: 2, y: 0)
demo(oblue)
set-transform(none)
line((-1, 0), (5, 0))
})
#v(1fr)
Glide reflection
],
)
#definition()
A _wallpaper_ is a two-dimensional pattern that...
- has translational symmetry in at least two non-parallel directions (and therefore fills the plane) \
#note[
"Translational symmetry" means that we can slide the entire wallpaper in some direction, \
eventually mapping the pattern to itself.]
- has a countable number of reflection, rotation, or glide symmetries. \
#v(1fr)
#pagebreak()
#problem()
Is a plain square grid a valid wallpaper?
#solution([
Yes!
- It has translational symmetry in the horizontal and vertical directions
- It has a countable number of symmetries---namely, six distinct mirror lines (horizontal, vertical, and diagonal) duplicated once per square.
- A square grid is #sym.convolve`442`
])
#v(1fr)
#problem()
Is the empty plane a valid wallpaper?
#solution([
No, since it has uncountably many symmetries.
])
#v(1fr)

View File

@ -0,0 +1,132 @@
#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
= Mirror Symmetry
#definition()
A _reflection_ is a transformation of the plane obtained by reflecting all points about a line. \
If this reflection maps the wallpaper to itself, we have a _mirror symmetry_. \
If $n$ such mirror lines intersect at a point, they form a _mirror node of order $n$_. \
#note[Mirror nodes with order 1 do not exist (i.e, $n >= 2$). A line does not intersect itself!]
#v(2mm)
Two mirror nodes on a wallpaper are identical if we can map one to the other with a translation and a rotation while preserving the pattern on that wallpaper.
#problem(label: "pat333")
Find all three distinct mirror nodes in the following pattern. \
What is the order of each node? \
#hint([
You may notice rotational symmetry in this pattern. \
Don't worry about that yet, we'll discuss it later.
])
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 45mm,
image("../res/wolfram/p3m1.svg", height: 100%),
)
#solution([
The mirror nodes are:
- the center of the amber cross
- the center of each right-handed group of three adjacent hexagons
- the center of each left-handed group of three adjacent hexagons
])
#v(1fr)
#definition()
_Orbifold notation_ gives us a way to describe the symmetries of a wallpaper. \
It defines a _signature_ that fully describes all the symmetries of a given pattern. \
We will introduce orbifold notation one symmetry at a time.
#definition()
In orbifold notation, mirror nodes are denoted by a #sym.convolve followed by a list of integer. \
Every integer $n$ following a #sym.convolve denotes a mirror node of order $n$.
#v(2mm)
The order of these integers doesn't matter. #sym.convolve`234` and #sym.convolve`423` are the same signature. \
However, we usually denote $n$-fold symmetries in descending order (that is, like #sym.convolve`432`). \
If we have many nodes of the same order, integers may be repeated.
#problem()
What is the signature of the wallpaper in @pat333? \
#hint[Again, ignore rotational symmetry for now.]
#solution([It is #sym.convolve`333`])
// MARK: page
#v(1fr)
#pagebreak()
#problem()
Find the signature of the following pattern.
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 60mm,
image("../res/*632-a.png", height: 100%),
)
#solution([
It is #sym.convolve`632`:
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 40mm,
image("../res/*632-b.png", height: 100%),
)
])
#v(1fr)
#problem()
Draw a wallpaper pattern with signature #sym.convolve`2222`
#solution([
Sample solutions are below.
#table(
stroke: none,
align: center,
columns: (1fr, 1fr),
rows: 50mm,
image("../res/wolfram/pmm.svg", height: 100%),
image("../res/escher/pmm.svg", height: 100%),
)
])
#v(1fr)
#pagebreak()
#remark()
In an exceptional case, we have two parallel mirror lines. \
Consider the following pattern:
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 60mm,
image("../res/**.png", height: 100%),
)
The signature of this pattern is #sym.convolve#sym.convolve
#problem()
Draw another wallpaper pattern with signature #sym.convolve#sym.convolve.
#v(1fr)

View File

@ -0,0 +1,181 @@
#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
= Rotational Symmetry
#definition()
A wallpaper may also have $n$-fold rotational symmetry about a point.
#v(2mm)
This means there are no more than $n$ rotations around that point that map the wallpaper to itself.
#v(2mm)
As before, two points of rotational symmetry are identical if we can perform a translation and rotation that maps one to the other without changing the wallpaper.
#definition()
In orbifold notation, rotation is specified similarly to reflection, but uses the prefix #sym.diamond.stroked.small. \
For example:
- #sym.diamond.stroked.small`333` denotes a pattern with three distinct centers of rotation of order 3.
- #sym.diamond.stroked.small`4`#sym.convolve`2` denotes a pattern with one rotation center of order 4 and one mirror node of order 2.
#table(
stroke: none,
align: center,
columns: (1fr, 1fr),
rows: 50mm,
image("../res/333.png", height: 100%), image("../res/3*3.png", height: 100%),
)
#problem()
Find the three rotation centers in the left wallpaper. \
What are their orders?
#solution([This is #sym.diamond.stroked.small`333`])
#v(1fr)
#problem()
Find the signature of the pattern on the right.
#solution([This is #sym.diamond.stroked.small`3`#sym.convolve`3`])
#v(1fr)
#remark()
You may have noticed that we could have an ambiguous classification, since two reflections are equivalent to a translation and a rotation.
We thus make the following distinction: _rotational symmetry that can be explained by reflection is not rotational symmetry._
#v(2mm)
In other words, when classifying a pattern...
- we first find all mirror symmetries,
- then all rotational symmetries that are not accounted for by reflection.
#pagebreak()
// MARK: glide
= Glide Reflections
#definition()
Another type of symmetry is the _glide reflection_, denoted #sym.times.
A glide reflection is the result of a translation along a line followed by reflection about that line.
For example, consider the following pattern:
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 60mm,
image("../res/*x-a.png", height: 100%),
)
#problem()
Convince yourself that all mirror lines in this pattern are _not_ distinct. /
In other words, this pattern has only one mirror symmetry.
#solution([
There may seem to be two, but they are identical. \
We can translate one onto the other.
])
#v(1fr)
#problem()
Use the following picture to find the glide reflection in the above pattern.
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 70mm,
image("../res/*x-b.png", height: 100%),
)
#v(1fr)
#remark()
The signature of this wallpaper is #sym.convolve#sym.times.
#pagebreak()
#definition()
If none of the above symmetries appear in a pattern, then we only have simple translational symmetry. We denote this with the signature #sym.circle.small.
#remark()
In summary, to find the signature of a pattern:
- find the mirror lines (#sym.convolve) and the distinct intersections;
- then find the rotation centers (#sym.diamond.stroked.small) not explained by reflection;
- then find all glide reflections (#sym.times) that do not cross a mirror line.
- If we have none of the above, our pattern must be #sym.circle.small.
#problem()
Find the signature of the following pattern:
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 50mm,
image("../res/wiki/Wallpaper_group-cm-4.jpg", height: 100%),
)
#solution([
This is #sym.convolve#sym.times.
])
#v(1fr)
#problem()
Find the signature of the following pattern:
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 60mm,
image("../res/wiki/Wallpaper_group-p4g-2.jpg", height: 100%),
)
#solution([
This is #sym.diamond.stroked.small`4`#sym.convolve`2`
])
#v(1fr)
#pagebreak()
#problem()
Find two glide reflections in the following pattern.\
#note[(and thus show that its signature is #sym.times#sym.times.)]
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 70mm,
image("../res/xx-b.png", height: 100%),
)
#solution([
#table(
stroke: none,
align: center,
columns: 1fr,
rows: 40mm,
image("../res/xx-a.png", height: 100%),
)
])
#v(1fr)

View File

@ -0,0 +1,67 @@
#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
#let pat(img, sol) = {
problem()
table(
stroke: none,
align: center,
columns: (1fr, 1fr),
rows: 80mm,
image(img, height: 100%), image(img, height: 100%),
)
solution(sol)
v(1fr)
}
= A few problems
Find the signatures of the following patterns. Mark all mirror nodes, rotation centers, and glide reflections. \
Each pattern is provided twice for convenience.
#pat("../res/wolfram/cm.svg", [#sym.times#sym.convolve])
#pat("../res/wolfram/cmm.svg", [#sym.diamond.stroked`2`#sym.convolve`22`])
#pagebreak()
#pat("../res/wolfram/p3.svg", [#sym.diamond.stroked`333`])
#pat("../res/wolfram/p3m1.svg", [#sym.convolve`333`])
#pagebreak()
#pat("../res/wolfram/p4.svg", [#sym.diamond.stroked`442`])
#pat("../res/wolfram/p4m.svg", [#sym.convolve`442`])
#pagebreak()
#pat("../res/wolfram/p6.svg", [#sym.diamond.stroked`632`])
#pat("../res/wolfram/p6m.svg", [#sym.convolve`632`])
#pagebreak()
#pat("../res/wolfram/p4g.svg", [#sym.diamond.stroked`4`#sym.convolve`2`])
#pat("../res/wolfram/p31m.svg", [#sym.diamond.stroked`3`#sym.convolve`3`])
#pagebreak()
#problem()
Draw a wallpaper with the signature #sym.convolve`442` \
#note[Make sure there are no other symmetries!]
#v(1fr)
#pagebreak()
#pat("../res/wolfram/pgg.svg", [#sym.diamond.stroked`22`#sym.times])
#pat("../res/wolfram/pmg.svg", [#sym.diamond.stroked`22`#sym.convolve])
#pagebreak()
#pat("../res/wolfram/pg.svg", [#sym.times#sym.times])
#pat("../res/wolfram/pm.svg", [#sym.convolve#sym.convolve])
#pagebreak()
#pat("../res/wolfram/p2.svg", [#sym.diamond.stroked`2222`])
#pat("../res/wolfram/pmm.svg", [#sym.convolve`2222`])
#pagebreak()
#pat("../res/wolfram/p1.svg", [#sym.circle.small])

View File

@ -0,0 +1,100 @@
#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
= The Signature-Cost Theorem
#definition()
First, we'll associate a _cost_ to each type of symmetry in orbifold notation:
#v(4mm)
#align(
center,
table(
stroke: (1pt, 1pt),
align: center,
columns: (auto, auto, auto, auto),
[*Symbol*], [*Cost*], [*Symbol*], [*Cost*],
[#sym.circle.small], [2], [#sym.times or #sym.convolve], [1],
[#sym.diamond.stroked.small`2`], [1/2], [#sym.convolve`2`], [1/4],
[#sym.diamond.stroked.small`3`], [2/3], [#sym.convolve`3`], [1/3],
[#sym.dots], [#sym.dots], [#sym.dots], [#sym.dots],
[#sym.diamond.stroked.small`n`],
[$(n-1) / n$],
[#sym.convolve`n`],
[$(n-1) / (2n)$],
),
)
We then calculate the total "cost" of a signature by adding up the costs of each component.
For example, a pattern with signature #sym.convolve`333` has cost 2:
#v(2mm)
$
2 / 3 + 2 / 3 + 2 / 3 = 2
$
#problem()
Calculate the costs of the following signatures:
- #sym.diamond.stroked.small`3`#sym.convolve`3`
- #sym.convolve#sym.convolve
- #sym.diamond.stroked.small`4`#sym.convolve`2`:
#solution([
- #sym.diamond.stroked.small`3`#sym.convolve`3`: $2/3 + 1 + 1/3 = 2$
- #sym.convolve#sym.convolve: $1 + 1 = 2$
- #sym.diamond.stroked.small`4`#sym.convolve`2`: $3/4 + 1 + 1/4 = 2$
])
#v(1fr)
#theorem(name: "Signature Cost Theorem")
The signatures of planar wallpaper patterns are exactly those with total cost 2. \
#note([We will not prove this theorem today, accept it without proof.])
#problem()
Consider the 4 symmetries (translation, reflection, rotation, and glide reflection). \
Which preserve orientation? Which reverse orientation?
#solution([
- Reflections and glide reflections reverse orientation (directions of spirals).
- Translation and rotation preserve orientation.
])
#v(1fr)
#pagebreak()
#problem()
Use the signature-cost theorem to find all the signatures consisting of only #sym.circle.small or rotational symmetries.
#solution([
#sym.diamond.stroked.small`632`, #sym.diamond.stroked.small`442`, #sym.diamond.stroked.small`333`, #sym.diamond.stroked.small`2222`, #sym.circle.small
])
#v(1fr)
#problem()
Find all the signatures consisting of only mirror symmetries.
#solution([
#sym.convolve`632`, #sym.convolve`442`, #sym.convolve`333`, #sym.convolve`2222`, #sym.convolve#sym.convolve
])
#v(1fr)
#problem()
Find all the remaining signatures. \
Each must be a mix of of mirror symmetries, rotational symmetries, or glide reflections. \
#hint([They are all shown in the problems section.])
#solution([
#sym.diamond.stroked.small`3`#sym.convolve`3`, #sym.diamond.stroked.small`4`#sym.convolve`2`,
#sym.diamond.stroked.small`22`#sym.times, #sym.diamond.stroked.small`22`#sym.convolve,
#sym.times#sym.times, #sym.times#sym.convolve
])
#v(1fr)

Binary file not shown.

After

Width:  |  Height:  |  Size: 535 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 484 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 280 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 666 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 533 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 568 KiB

View File

@ -0,0 +1,86 @@
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN" "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd">
<svg xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="10.16cm" height="5.08cm" viewBox="0 0 384 192">
<title>pmm</title>
<desc>Exported by Tess 1.70.</desc>
<clipPath id="mainclip"><rect x="0" y="0" width="384" height="192"/></clipPath>
<g style="fill-rule:evenodd; stroke-linejoin:round; stroke-linecap:round; clip-path:url(#mainclip)">
<defs>
<g id="Tess0p">
<path d="
M7.1306642022,-41.0013191628
L7.1306642022,-7.1306642022
L89.1333025278,-7.1306642022
L7.1306642022,-42.7839852134
"/></g>
<g id="Tess0" style="fill:none; stroke:none"><use xlink:href="#Tess0p"/></g>
<g id="Tess1" style="fill:none; stroke:rgb(0,0,0); stroke-width:1.7826660506"><use xlink:href="#Tess0p"/></g>
</defs>
<g transform="translate(192,96) rotate(0) scale(0.5609575611,0.5609575611)">
<g transform="translate(-405.2631578947,-100)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-405.2631578947,0)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-405.2631578947,100)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-405.2631578947,200)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,-100)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,0)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,100)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,200)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,-100)"><use xlink:href="#Tess1"/></g>
<g><use xlink:href="#Tess1"/></g>
<g transform="translate(0,100)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,200)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,-100)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,0)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,100)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,200)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,0) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,0) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,0) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,100) rotate(180)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,0) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,0) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,0) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(405.2631578947,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-405.2631578947,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-405.2631578947,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-405.2631578947,0) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-405.2631578947,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,0) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(-202.6315789474,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(0,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,0) scale(1,-1)"><use xlink:href="#Tess1"/></g>
<g transform="translate(202.6315789474,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 800 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 436 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 991 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 233 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 236 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 196 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 178 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 205 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 299 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 264 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 268 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 204 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 229 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 273 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 379 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 176 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 147 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 163 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 178 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 226 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 406 KiB

View File

@ -1,6 +1,7 @@
[default] [default]
extend-words."LSAT" = "LSAT" extend-words."LSAT" = "LSAT"
extend-words."ket" = "ket" extend-words."ket" = "ket"
extend-words."typ" = "typ"
extend-ignore-re = [ extend-ignore-re = [
# spell:disable-line # spell:disable-line