151
src/Advanced/Wallpaper/parts/00 intro.typ
Normal file
151
src/Advanced/Wallpaper/parts/00 intro.typ
Normal file
@ -0,0 +1,151 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= Wallpaper Symmetries
|
||||
|
||||
#definition()
|
||||
A _Euclidean isometry_ is a transformation of the plane that preserves distances. \
|
||||
Intuitively, an isometry moves objects on the plane without deforming them.
|
||||
|
||||
There are four classes of Euclidean isometries:
|
||||
- translations
|
||||
- reflections
|
||||
- rotations
|
||||
- glide reflections
|
||||
#note([We can prove there are no others, but this is beyond the scope of this handout.]) \
|
||||
A simple example of each isometry is shown below:
|
||||
|
||||
#let demo(c) = {
|
||||
let s = 0.5
|
||||
cetz.draw.line(
|
||||
(0, 0),
|
||||
(3 * s, 0),
|
||||
(3 * s, 1 * s),
|
||||
(1 * s, 1 * s),
|
||||
(1 * s, 2 * s),
|
||||
(0, 2 * s),
|
||||
close: true,
|
||||
fill: c,
|
||||
stroke: black + 0mm * s,
|
||||
)
|
||||
}
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: (3.5cm, 3.5cm),
|
||||
row-gutter: 2mm,
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
demo(ored)
|
||||
translate(x: -1.0, y: -1.0)
|
||||
demo(oblue)
|
||||
})
|
||||
#v(1fr)
|
||||
Translation
|
||||
],
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
circle((-2, 0), radius: 0.1, stroke: none, fill: black)
|
||||
arc(
|
||||
(-2, 0),
|
||||
radius: 1,
|
||||
anchor: "origin",
|
||||
start: 0deg,
|
||||
stop: -30deg,
|
||||
mode: "PIE",
|
||||
)
|
||||
|
||||
demo(ored)
|
||||
rotate(z: -30deg, origin: (-2, 0))
|
||||
demo(oblue)
|
||||
})
|
||||
#v(1fr)
|
||||
Rotation
|
||||
],
|
||||
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
line((-2, 0), (4, 0))
|
||||
|
||||
translate(x: 0, y: 0.25)
|
||||
demo(ored)
|
||||
set-transform(none)
|
||||
|
||||
set-transform((
|
||||
(1, 0, 0, 0),
|
||||
(0, 1, 0, 0),
|
||||
(0, 0, 1, 0),
|
||||
(0, 0, 0, 1),
|
||||
))
|
||||
|
||||
translate(x: 0, y: 0.25)
|
||||
demo(oblue)
|
||||
})
|
||||
#v(1fr)
|
||||
Reflection
|
||||
],
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
|
||||
demo(ored)
|
||||
|
||||
set-transform((
|
||||
(1, 0, 0, 0),
|
||||
(0, 1, 0, 0),
|
||||
(0, 0, 0, 0),
|
||||
(0, 0, 0, 0),
|
||||
))
|
||||
translate(x: 2, y: 0)
|
||||
|
||||
demo(oblue)
|
||||
|
||||
set-transform(none)
|
||||
line((-1, 0), (5, 0))
|
||||
})
|
||||
#v(1fr)
|
||||
Glide reflection
|
||||
],
|
||||
)
|
||||
|
||||
#definition()
|
||||
A _wallpaper_ is a two-dimensional pattern that...
|
||||
- has translational symmetry in at least two non-parallel directions (and therefore fills the plane) \
|
||||
#note[
|
||||
"Translational symmetry" means that we can slide the entire wallpaper in some direction, \
|
||||
eventually mapping the pattern to itself.]
|
||||
- has a countable number of reflection, rotation, or glide symmetries. \
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Is a plain square grid a valid wallpaper?
|
||||
|
||||
#solution([
|
||||
Yes!
|
||||
- It has translational symmetry in the horizontal and vertical directions
|
||||
- It has a countable number of symmetries---namely, six distinct mirror lines (horizontal, vertical, and diagonal) duplicated once per square.
|
||||
- A square grid is #sym.convolve`442`
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Is the empty plane a valid wallpaper?
|
||||
|
||||
#solution([
|
||||
No, since it has uncountably many symmetries.
|
||||
])
|
||||
|
||||
#v(1fr)
|
132
src/Advanced/Wallpaper/parts/01 reflect.typ
Normal file
132
src/Advanced/Wallpaper/parts/01 reflect.typ
Normal file
@ -0,0 +1,132 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= Mirror Symmetry
|
||||
|
||||
#definition()
|
||||
A _reflection_ is a transformation of the plane obtained by reflecting all points about a line. \
|
||||
If this reflection maps the wallpaper to itself, we have a _mirror symmetry_. \
|
||||
|
||||
If $n$ such mirror lines intersect at a point, they form a _mirror node of order $n$_. \
|
||||
#note[Mirror nodes with order 1 do not exist (i.e, $n >= 2$). A line does not intersect itself!]
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Two mirror nodes on a wallpaper are identical if we can map one to the other with a translation and a rotation while preserving the pattern on that wallpaper.
|
||||
|
||||
#problem(label: "pat333")
|
||||
Find all three distinct mirror nodes in the following pattern. \
|
||||
What is the order of each node? \
|
||||
#hint([
|
||||
You may notice rotational symmetry in this pattern. \
|
||||
Don't worry about that yet, we'll discuss it later.
|
||||
])
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 45mm,
|
||||
image("../res/wolfram/p3m1.svg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
The mirror nodes are:
|
||||
- the center of the amber cross
|
||||
- the center of each right-handed group of three adjacent hexagons
|
||||
- the center of each left-handed group of three adjacent hexagons
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#definition()
|
||||
_Orbifold notation_ gives us a way to describe the symmetries of a wallpaper. \
|
||||
It defines a _signature_ that fully describes all the symmetries of a given pattern. \
|
||||
We will introduce orbifold notation one symmetry at a time.
|
||||
|
||||
#definition()
|
||||
In orbifold notation, mirror nodes are denoted by a #sym.convolve followed by a list of integer. \
|
||||
Every integer $n$ following a #sym.convolve denotes a mirror node of order $n$.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
The order of these integers doesn't matter. #sym.convolve`234` and #sym.convolve`423` are the same signature. \
|
||||
However, we usually denote $n$-fold symmetries in descending order (that is, like #sym.convolve`432`). \
|
||||
If we have many nodes of the same order, integers may be repeated.
|
||||
|
||||
|
||||
#problem()
|
||||
What is the signature of the wallpaper in @pat333? \
|
||||
#hint[Again, ignore rotational symmetry for now.]
|
||||
#solution([It is #sym.convolve`333`])
|
||||
|
||||
|
||||
// MARK: page
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern.
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/*632-a.png", height: 100%),
|
||||
)
|
||||
|
||||
|
||||
#solution([
|
||||
It is #sym.convolve`632`:
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 40mm,
|
||||
image("../res/*632-b.png", height: 100%),
|
||||
)
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Draw a wallpaper pattern with signature #sym.convolve`2222`
|
||||
|
||||
#solution([
|
||||
Sample solutions are below.
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 50mm,
|
||||
image("../res/wolfram/pmm.svg", height: 100%),
|
||||
image("../res/escher/pmm.svg", height: 100%),
|
||||
)
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#remark()
|
||||
In an exceptional case, we have two parallel mirror lines. \
|
||||
Consider the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/**.png", height: 100%),
|
||||
)
|
||||
|
||||
The signature of this pattern is #sym.convolve#sym.convolve
|
||||
|
||||
#problem()
|
||||
Draw another wallpaper pattern with signature #sym.convolve#sym.convolve.
|
||||
|
||||
#v(1fr)
|
181
src/Advanced/Wallpaper/parts/02 rotate.typ
Normal file
181
src/Advanced/Wallpaper/parts/02 rotate.typ
Normal file
@ -0,0 +1,181 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= Rotational Symmetry
|
||||
|
||||
|
||||
#definition()
|
||||
A wallpaper may also have $n$-fold rotational symmetry about a point.
|
||||
#v(2mm)
|
||||
This means there are no more than $n$ rotations around that point that map the wallpaper to itself.
|
||||
#v(2mm)
|
||||
As before, two points of rotational symmetry are identical if we can perform a translation and rotation that maps one to the other without changing the wallpaper.
|
||||
|
||||
#definition()
|
||||
In orbifold notation, rotation is specified similarly to reflection, but uses the prefix #sym.diamond.stroked.small. \
|
||||
For example:
|
||||
- #sym.diamond.stroked.small`333` denotes a pattern with three distinct centers of rotation of order 3.
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2` denotes a pattern with one rotation center of order 4 and one mirror node of order 2.
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 50mm,
|
||||
image("../res/333.png", height: 100%), image("../res/3*3.png", height: 100%),
|
||||
)
|
||||
|
||||
|
||||
#problem()
|
||||
Find the three rotation centers in the left wallpaper. \
|
||||
What are their orders?
|
||||
|
||||
#solution([This is #sym.diamond.stroked.small`333`])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Find the signature of the pattern on the right.
|
||||
|
||||
#solution([This is #sym.diamond.stroked.small`3`#sym.convolve`3`])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#remark()
|
||||
You may have noticed that we could have an ambiguous classification, since two reflections are equivalent to a translation and a rotation.
|
||||
We thus make the following distinction: _rotational symmetry that can be explained by reflection is not rotational symmetry._
|
||||
|
||||
#v(2mm)
|
||||
|
||||
In other words, when classifying a pattern...
|
||||
- we first find all mirror symmetries,
|
||||
- then all rotational symmetries that are not accounted for by reflection.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
// MARK: glide
|
||||
|
||||
= Glide Reflections
|
||||
|
||||
#definition()
|
||||
Another type of symmetry is the _glide reflection_, denoted #sym.times.
|
||||
|
||||
A glide reflection is the result of a translation along a line followed by reflection about that line.
|
||||
|
||||
For example, consider the following pattern:
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/*x-a.png", height: 100%),
|
||||
)
|
||||
|
||||
#problem()
|
||||
Convince yourself that all mirror lines in this pattern are _not_ distinct. /
|
||||
In other words, this pattern has only one mirror symmetry.
|
||||
|
||||
#solution([
|
||||
There may seem to be two, but they are identical. \
|
||||
We can translate one onto the other.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
Use the following picture to find the glide reflection in the above pattern.
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 70mm,
|
||||
image("../res/*x-b.png", height: 100%),
|
||||
)
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#remark()
|
||||
The signature of this wallpaper is #sym.convolve#sym.times.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#definition()
|
||||
If none of the above symmetries appear in a pattern, then we only have simple translational symmetry. We denote this with the signature #sym.circle.small.
|
||||
|
||||
#remark()
|
||||
In summary, to find the signature of a pattern:
|
||||
- find the mirror lines (#sym.convolve) and the distinct intersections;
|
||||
- then find the rotation centers (#sym.diamond.stroked.small) not explained by reflection;
|
||||
- then find all glide reflections (#sym.times) that do not cross a mirror line.
|
||||
- If we have none of the above, our pattern must be #sym.circle.small.
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 50mm,
|
||||
image("../res/wiki/Wallpaper_group-cm-4.jpg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
This is #sym.convolve#sym.times.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/wiki/Wallpaper_group-p4g-2.jpg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
This is #sym.diamond.stroked.small`4`#sym.convolve`2`
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Find two glide reflections in the following pattern.\
|
||||
#note[(and thus show that its signature is #sym.times#sym.times.)]
|
||||
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 70mm,
|
||||
image("../res/xx-b.png", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 40mm,
|
||||
image("../res/xx-a.png", height: 100%),
|
||||
)
|
||||
])
|
||||
|
||||
#v(1fr)
|
67
src/Advanced/Wallpaper/parts/03 problems.typ
Normal file
67
src/Advanced/Wallpaper/parts/03 problems.typ
Normal file
@ -0,0 +1,67 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
#let pat(img, sol) = {
|
||||
problem()
|
||||
|
||||
table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 80mm,
|
||||
image(img, height: 100%), image(img, height: 100%),
|
||||
)
|
||||
|
||||
solution(sol)
|
||||
v(1fr)
|
||||
}
|
||||
|
||||
= A few problems
|
||||
|
||||
Find the signatures of the following patterns. Mark all mirror nodes, rotation centers, and glide reflections. \
|
||||
Each pattern is provided twice for convenience.
|
||||
|
||||
|
||||
#pat("../res/wolfram/cm.svg", [#sym.times#sym.convolve])
|
||||
#pat("../res/wolfram/cmm.svg", [#sym.diamond.stroked`2`#sym.convolve`22`])
|
||||
#pagebreak()
|
||||
|
||||
|
||||
|
||||
|
||||
#pat("../res/wolfram/p3.svg", [#sym.diamond.stroked`333`])
|
||||
#pat("../res/wolfram/p3m1.svg", [#sym.convolve`333`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p4.svg", [#sym.diamond.stroked`442`])
|
||||
#pat("../res/wolfram/p4m.svg", [#sym.convolve`442`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p6.svg", [#sym.diamond.stroked`632`])
|
||||
#pat("../res/wolfram/p6m.svg", [#sym.convolve`632`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p4g.svg", [#sym.diamond.stroked`4`#sym.convolve`2`])
|
||||
#pat("../res/wolfram/p31m.svg", [#sym.diamond.stroked`3`#sym.convolve`3`])
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Draw a wallpaper with the signature #sym.convolve`442` \
|
||||
#note[Make sure there are no other symmetries!]
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#pat("../res/wolfram/pgg.svg", [#sym.diamond.stroked`22`#sym.times])
|
||||
#pat("../res/wolfram/pmg.svg", [#sym.diamond.stroked`22`#sym.convolve])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/pg.svg", [#sym.times#sym.times])
|
||||
#pat("../res/wolfram/pm.svg", [#sym.convolve#sym.convolve])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p2.svg", [#sym.diamond.stroked`2222`])
|
||||
#pat("../res/wolfram/pmm.svg", [#sym.convolve`2222`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p1.svg", [#sym.circle.small])
|
100
src/Advanced/Wallpaper/parts/04 theorem.typ
Normal file
100
src/Advanced/Wallpaper/parts/04 theorem.typ
Normal file
@ -0,0 +1,100 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= The Signature-Cost Theorem
|
||||
|
||||
#definition()
|
||||
First, we'll associate a _cost_ to each type of symmetry in orbifold notation:
|
||||
|
||||
#v(4mm)
|
||||
#align(
|
||||
center,
|
||||
table(
|
||||
stroke: (1pt, 1pt),
|
||||
align: center,
|
||||
columns: (auto, auto, auto, auto),
|
||||
[*Symbol*], [*Cost*], [*Symbol*], [*Cost*],
|
||||
[#sym.circle.small], [2], [#sym.times or #sym.convolve], [1],
|
||||
[#sym.diamond.stroked.small`2`], [1/2], [#sym.convolve`2`], [1/4],
|
||||
[#sym.diamond.stroked.small`3`], [2/3], [#sym.convolve`3`], [1/3],
|
||||
[#sym.dots], [#sym.dots], [#sym.dots], [#sym.dots],
|
||||
[#sym.diamond.stroked.small`n`],
|
||||
[$(n-1) / n$],
|
||||
[#sym.convolve`n`],
|
||||
[$(n-1) / (2n)$],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
We then calculate the total "cost" of a signature by adding up the costs of each component.
|
||||
|
||||
For example, a pattern with signature #sym.convolve`333` has cost 2:
|
||||
|
||||
#v(2mm)
|
||||
|
||||
$
|
||||
2 / 3 + 2 / 3 + 2 / 3 = 2
|
||||
$
|
||||
|
||||
#problem()
|
||||
Calculate the costs of the following signatures:
|
||||
- #sym.diamond.stroked.small`3`#sym.convolve`3`
|
||||
- #sym.convolve#sym.convolve
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2`:
|
||||
|
||||
#solution([
|
||||
- #sym.diamond.stroked.small`3`#sym.convolve`3`: $2/3 + 1 + 1/3 = 2$
|
||||
- #sym.convolve#sym.convolve: $1 + 1 = 2$
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2`: $3/4 + 1 + 1/4 = 2$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#theorem(name: "Signature Cost Theorem")
|
||||
The signatures of planar wallpaper patterns are exactly those with total cost 2. \
|
||||
#note([We will not prove this theorem today, accept it without proof.])
|
||||
|
||||
#problem()
|
||||
Consider the 4 symmetries (translation, reflection, rotation, and glide reflection). \
|
||||
Which preserve orientation? Which reverse orientation?
|
||||
|
||||
#solution([
|
||||
- Reflections and glide reflections reverse orientation (directions of spirals).
|
||||
- Translation and rotation preserve orientation.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Use the signature-cost theorem to find all the signatures consisting of only #sym.circle.small or rotational symmetries.
|
||||
|
||||
#solution([
|
||||
#sym.diamond.stroked.small`632`, #sym.diamond.stroked.small`442`, #sym.diamond.stroked.small`333`, #sym.diamond.stroked.small`2222`, #sym.circle.small
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find all the signatures consisting of only mirror symmetries.
|
||||
|
||||
#solution([
|
||||
#sym.convolve`632`, #sym.convolve`442`, #sym.convolve`333`, #sym.convolve`2222`, #sym.convolve#sym.convolve
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find all the remaining signatures. \
|
||||
Each must be a mix of of mirror symmetries, rotational symmetries, or glide reflections. \
|
||||
#hint([They are all shown in the problems section.])
|
||||
|
||||
#solution([
|
||||
#sym.diamond.stroked.small`3`#sym.convolve`3`, #sym.diamond.stroked.small`4`#sym.convolve`2`,
|
||||
#sym.diamond.stroked.small`22`#sym.times, #sym.diamond.stroked.small`22`#sym.convolve,
|
||||
#sym.times#sym.times, #sym.times#sym.convolve
|
||||
])
|
||||
|
||||
#v(1fr)
|
Reference in New Issue
Block a user