Cleanup
This commit is contained in:
105
Intermediate/Slide Rules/parts/6 log.tex
Normal file
105
Intermediate/Slide Rules/parts/6 log.tex
Normal file
@ -0,0 +1,105 @@
|
||||
\section{Logarithms Base 10}
|
||||
|
||||
When we take a logarithm, the resulting number has two parts: the \textit{characteristic} and the \textit{mantissa}. \\
|
||||
The characteristic is the integral (whole-numbered) part of the answer, and the mantissa is the fractional part (what comes after the decimal). \\
|
||||
|
||||
\medskip
|
||||
|
||||
For example, $\log_{10}{18} = 1.255$, so in this case the characteristic is $1$ and the mantissa is $0.255$.
|
||||
|
||||
\problem{}
|
||||
Approximate the following logs without a slide rule. Find the exact characteristic, and approximate the mantissa.
|
||||
\begin{enumerate}
|
||||
\item $\log_{10}{20}$
|
||||
\item $\log_{2}{18}$
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solution}
|
||||
\begin{enumerate}
|
||||
\item $\log_{10}{20} = 1.30$
|
||||
\item $\log_{2}{18} = 4.17$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
Now, find the L scale on your slide rule. As you can see on the right, its generating function is $\log_{10}{x}$.
|
||||
|
||||
\problem{}
|
||||
Compute the following logarithms using your slide rule. \\
|
||||
You'll have to find the characteristic yourself, but your L scale will give you the mantissa. \\
|
||||
Don't forget your log identities!
|
||||
|
||||
\begin{enumerate}
|
||||
\item $\log_{10}{20}$
|
||||
\item $\log_{10}{15}$
|
||||
\item $\log_{10}{150}$
|
||||
\item $\log_{10}{0.024}$
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solution}
|
||||
Careful with number 4.
|
||||
|
||||
\begin{enumerate}
|
||||
\item $\log_{10}{20} = 1.30$
|
||||
\item $\log_{10}{15} = 1.176$
|
||||
\item $\log_{10}{150} = 2.176$
|
||||
\item $\log_{10}{0.024} = -1.6197$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
%\problem{}
|
||||
%Find the following.
|
||||
%\begin{enumerate}[itemsep=2mm]
|
||||
% \item $\frac{118 \times 0.51}{6.6}$
|
||||
% \item $\sqrt{33.8} \times \sqrt[3]{226}$
|
||||
% \item $\frac{\sqrt{152}}{\sqrt[3]{4.95}}$
|
||||
% \item $\frac{\sqrt{96 \times 250}}{\sqrt{7 \times 0.88}}$
|
||||
% \item The area of a circle with radius $1.47$
|
||||
% \item The circumference of a circle with radius $31.4$
|
||||
% \item The radius of a circle with area $6\pi$
|
||||
% \item $\log_{10}{17.38}$
|
||||
%\end{enumerate}
|
||||
%\vfill
|
||||
%\pagebreak
|
||||
|
||||
\section{Logarithms in Any Base}
|
||||
|
||||
Our slide rule easily computes logarithms in base 10, but we can also use it to find logarithms in \textit{any} base.
|
||||
|
||||
\proposition{}<logcob>
|
||||
This is usually called the \textit{change-of-base} formula:
|
||||
|
||||
\[
|
||||
\log_{b}{a} = \frac{\log_c{a}}{\log_c{b}}
|
||||
\]
|
||||
|
||||
\problem{}
|
||||
Using log identities, prove \ref{logcob}.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Approximate the following:
|
||||
\begin{enumerate}
|
||||
\item $\log_{2}{56}$
|
||||
\item $\log_{5.2}{26}$
|
||||
\item $\log_{12}{500}$
|
||||
\item $\log_{43}{134}$
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solution}
|
||||
\begin{enumerate}
|
||||
\item $\log_{2}{56} = 5.81$
|
||||
\item $\log_{5.2}{26} = 1.97$
|
||||
\item $\log_{12}{500} = 2.50$
|
||||
\item $\log_{43}{134} = 1.30$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user