Cleanup
This commit is contained in:
92
Intermediate/Slide Rules/parts/3 division.tex
Normal file
92
Intermediate/Slide Rules/parts/3 division.tex
Normal file
@ -0,0 +1,92 @@
|
||||
\section{Division}
|
||||
|
||||
Now that you can multiply, division should be easy. All you need to do is work backwards. \\
|
||||
Let's look at our first example again: $3 \times 2 = 6$.
|
||||
|
||||
\medskip
|
||||
|
||||
We can easily see that $6 \div 3 = 2$
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(2)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(6)}
|
||||
{1}
|
||||
{Align here}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(2)}
|
||||
{1}
|
||||
{2}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
and that $6 \div 2 = 3$:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(3)}{-3}{C}
|
||||
\cdscale{0}{-4}{D}
|
||||
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(6)}
|
||||
{-3}
|
||||
{Align here}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(3)}
|
||||
{-3}
|
||||
{3}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
If your left-hand index is off the scale, read the right-hand one. \\
|
||||
Consider $42.25 \div 6.5 = 6.5$:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(6.5) - \cdscalefn(10)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(4.225)}
|
||||
{1}
|
||||
{Align here}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(6.5)}
|
||||
{1}
|
||||
{6.5}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Place your decimal points carefully.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Compute the following using your slide rule. \\
|
||||
|
||||
\begin{enumerate}
|
||||
\item $135 \div 15$
|
||||
\item $68.2 \div 0.575$
|
||||
\item $(118 \times 0.51) \div 6.6$
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solution}
|
||||
\begin{enumerate}
|
||||
\item $135 \div 15 = 9$
|
||||
\item $68.2 \div 0.575 = 118.609$
|
||||
\item $(118 \times 0.51) \div 6.6 = 9.118$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user